Web-engineered ECC-based Group Key Protocol for Secure and Scalable Metering Communication

Сохранить в:
Библиографические подробности
Опубликовано в::Journal of Web Engineering vol. 24, no. 7 (2025), p. 1073-1103
Главный автор: Yang, Hao
Другие авторы: Zhang, Yiming
Опубликовано:
River Publishers
Предметы:
Online-ссылка:Citation/Abstract
Full Text
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3274433436
003 UK-CbPIL
022 |a 1540-9589 
022 |a 1544-5976 
024 7 |a 10.13052/jwe1540-9589.2473  |2 doi 
035 |a 3274433436 
045 2 |b d20251001  |b d20251119 
100 1 |a Yang, Hao 
245 1 |a Web-engineered ECC-based Group Key Protocol for Secure and Scalable Metering Communication 
260 |b River Publishers  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents a Web-native group key negotiation framework for secure and scalable communication in smart metering networks. Leveraging lightweight elliptic curve cryptography (ECC), the proposed protocol supports dynamic group membership, forward and backward secrecy, and resistance to impersonation and replay attacks – without relying on persistent sessions or centralized trust brokers. Unlike traditional TLS- or MQTT-based approaches, our design adopts stateless REST and CoAP messaging, enabling seamless integration with constrained IoT devices and cloud-native microservice platforms. We architect a modular system comprising smart meters, a secure gateway, and a REST-compliant backend, each aligned with Web of Things (WoT) standards. Group keys are established through a contributory ECC-based exchange that ensures decentralized key computation and rekeying across heterogeneous nodes. The gateway acts as a protocol adapter, translating CoAP messages into REST APIs while enforcing cryptographic policy and interoperability with tools such as Node-RED, Eclipse Leshan, and AWS IoT Core. Performance analysis shows that our protocol achieves group key negotiation in under 450 ms for 25 nodes with message sizes below 220 bytes, outperforming traditional LKH and centralized DH schemes by 30–40% in latency and bandwidth usage. Real-world case studies demonstrate successful deployment in rural microgrids and urban energy-sharing networks. By aligning cryptographic rigor with Web engineering principles, this work offers a practical and extensible solution for secure group communication in emerging energy and IoT infrastructures. 
653 |a Standards 
653 |a Negotiations 
653 |a Curves 
653 |a Metadata 
653 |a Interoperability 
653 |a Internet of Things 
653 |a Distributed generation 
653 |a Protocol 
653 |a Communication 
653 |a Modular systems 
653 |a Statelessness 
653 |a Modular equipment 
653 |a Nodes 
653 |a Network latency 
653 |a Design 
653 |a Group communication 
653 |a Cryptography 
653 |a Privacy 
653 |a Messages 
653 |a Internet service providers 
653 |a Smart meters 
653 |a Energy consumption 
653 |a Semantics 
700 1 |a Zhang, Yiming 
773 0 |t Journal of Web Engineering  |g vol. 24, no. 7 (2025), p. 1073-1103 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3274433436/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3274433436/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3274433436/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch