Modeling and optimization of a photovoltaic module’s parameters

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:MATEC Web of Conferences vol. 413 (2025)
Κύριος συγγραφέας: Mabrouk, Oumayma
Άλλοι συγγραφείς: Charki, Abderafi, Chatti, Nizar, Sidambarompoule, Xavier, Sid-ali Blaifi
Έκδοση:
EDP Sciences
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3274908418
003 UK-CbPIL
022 |a 2274-7214 
022 |a 2261-236X 
024 7 |a 10.1051/matecconf/202541301010  |2 doi 
035 |a 3274908418 
045 2 |b d20250101  |b d20251231 
084 |a 268433  |2 nlm 
100 1 |a Mabrouk, Oumayma 
245 1 |a Modeling and optimization of a photovoltaic module’s parameters 
260 |b EDP Sciences  |c 2025 
513 |a Conference Proceedings 
520 3 |a This study addresses the identification and optimization of parameters in the single-diode photovoltaic (PV) model (SDM), a widely adopted approach for simulating the electrical behavior of PV modules. The five key parameters, namely, the photo-generated current (Iph), the reverse saturation current (I0), the series resistance (Rs), the shunt resistance (Rsh), and the diode ideality factor (n), were initially estimated under Standard Test Conditions (STC) using manufacturer-provided data and the PV System toolbox in MATLAB. Based on these initial values, simulations of the current–voltage (I–V) and power–voltage (P–V) characteristics were conducted under real operating conditions using the Lambert W function and the Newton–Raphson method. An optimization procedure was then applied, combining the Newton–Raphson technique with two optimization algorithms: the Genetic Algorithm (GA) and the Levenberg–Marquardt (LM) method. The performance of each method was evaluated using three statistical indicators: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R2). Among the tested approaches, the Genetic Algorithm achieved the highest accuracy, with an RMSE of 0.0359 A, a MAE of 0.0270 A, and an R2 value of 0.9993. Finally, the analysis of environmental influence confirmed the significant impact of temperature and irradiance on module performance, particularly on the open-circuit voltage, maximum power output, and overall energy generation. 
653 |a Newton-Raphson method 
653 |a Parameter identification 
653 |a Shunt resistance 
653 |a Open circuit voltage 
653 |a Genetic algorithms 
653 |a Root-mean-square errors 
653 |a Irradiance 
653 |a Optimization 
653 |a Maximum power 
653 |a Photovoltaic cells 
700 1 |a Charki, Abderafi 
700 1 |a Chatti, Nizar 
700 1 |a Sidambarompoule, Xavier 
700 1 |a Sid-ali Blaifi 
773 0 |t MATEC Web of Conferences  |g vol. 413 (2025) 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3274908418/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3274908418/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch