A Machine Learning Approach to Credit Card Transaction Fraud Prediction

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:SHS Web of Conferences vol. 218 (2025)
Հիմնական հեղինակ: Liu, Zixuan
Հրապարակվել է:
EDP Sciences
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3274910704
003 UK-CbPIL
022 |a 2416-5182 
022 |a 2261-2424 
024 7 |a 10.1051/shsconf/202521802017  |2 doi 
035 |a 3274910704 
045 2 |b d20250101  |b d20251231 
084 |a 268334  |2 nlm 
100 1 |a Liu, Zixuan 
245 1 |a A Machine Learning Approach to Credit Card Transaction Fraud Prediction 
260 |b EDP Sciences  |c 2025 
513 |a Conference Proceedings 
520 3 |a Credit card fraud has a significant impact on the financial industry and is now a growing concern. Machine learning can minimize bias against legitimate transactions and enable accurate identification of fraud. This study explores machine learning techniques to address category imbalances in credit card fraud detection datasets to mitigate economic losses while improving model performance. The results show that logistic regression outperforms other classifiers, including support vector classifiers (SVC), K-nearest neighbor classifiers (KNN), and decision trees, achieving an optimal balance between fraud detection and minimizing false positives. By conducting data processing techniques such as feature scaling and dataset balancing, the model shows an effective identification of fraudulent transactions that rarely exist in a vast number of legitimate transactions. In addition, simple neural networks trained on oversampled data reveal higher recall rates but at the cost of higher false positives, highlighting the tradeoff between accuracy and fraud detection sensitivity. These findings underscore the importance of choosing models that can both effectively detect fraud and minimize disruption to legitimate transactions, which also provide valuable insights for financial institutions seeking to enhance their fraud detection systems. 
653 |a Fraud 
653 |a Machine learning 
653 |a Data processing 
653 |a Economic models 
653 |a Decision making 
653 |a Financial institutions 
653 |a Models 
653 |a Credit card fraud 
653 |a Fraud prevention 
653 |a Neural networks 
653 |a Credit 
653 |a Disruption 
653 |a Identification 
653 |a Credit cards 
653 |a Transactions 
773 0 |t SHS Web of Conferences  |g vol. 218 (2025) 
786 0 |d ProQuest  |t Sociology Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3274910704/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3274910704/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch