A data-based inverse problem-solving method for predicting structural orderings

Guardado en:
Detalles Bibliográficos
Publicado en:Frontiers of Structural and Civil Engineering vol. 19, no. 1 (Jan 2025), p. 22
Autor principal: Li, Yiwen
Otros Autores: Chen, Jianlong, Liu, Guangyan, Liu, Zhanli, Zhang, Kai
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275181304
003 UK-CbPIL
022 |a 2095-2430 
022 |a 2095-2449 
022 |a 1673-7407 
024 7 |a 10.1007/s11709-024-1078-y  |2 doi 
035 |a 3275181304 
045 2 |b d20250101  |b d20250131 
084 |a 108538  |2 nlm 
100 1 |a Li, Yiwen  |u Beijing Institute of Technology, School of Aerospace Engineering, Beijing, China (GRID:grid.43555.32) (ISNI:0000 0000 8841 6246) 
245 1 |a A data-based inverse problem-solving method for predicting structural orderings 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Inverse problem-solving methods have found applications in various fields, such as structural mechanics, acoustics, and non-destructive testing. However, accurately solving inverse problems becomes challenging when observed data are incomplete. Fortunately, advancements in computer science have paved the way for data-based methods, enabling the discovery of nonlinear relationships within diverse data sets. In this paper, a step-by-step completion method of displacement information is introduced and a data-driven approach for predicting structural parameters is proposed. The accuracy of the proposed approach is 23.83% higher than that of the Genetic Algorithm, demonstrating the outstanding accuracy and efficiency of the data-driven approach. This work establishes a framework for solving mechanical inverse problems by leveraging a data-based method, and proposes a promising avenue for extending the application of the data-driven approach to structural health monitoring. 
653 |a Problem solving 
653 |a Structural health monitoring 
653 |a Nondestructive testing 
653 |a Genetic algorithms 
653 |a Inverse problems 
653 |a Acoustics 
653 |a Accuracy 
653 |a Data processing 
653 |a Numerical analysis 
653 |a Aerospace engineering 
653 |a Mechanics 
653 |a Boundary conditions 
653 |a Efficiency 
653 |a Machine learning 
653 |a Partial differential equations 
653 |a Sensors 
653 |a Neural networks 
653 |a Methods 
653 |a Optimization algorithms 
653 |a Environmental 
700 1 |a Chen, Jianlong  |u Beijing Institute of Technology, School of Aerospace Engineering, Beijing, China (GRID:grid.43555.32) (ISNI:0000 0000 8841 6246) 
700 1 |a Liu, Guangyan  |u Beijing Institute of Technology, School of Aerospace Engineering, Beijing, China (GRID:grid.43555.32) (ISNI:0000 0000 8841 6246) 
700 1 |a Liu, Zhanli  |u Tsinghua University, Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Beijing, China (GRID:grid.12527.33) (ISNI:0000 0001 0662 3178) 
700 1 |a Zhang, Kai  |u Beijing Institute of Technology, School of Aerospace Engineering, Beijing, China (GRID:grid.43555.32) (ISNI:0000 0000 8841 6246); Beijing Institute of Technology, Tangshan Research Institute, Tangshan, China (GRID:grid.43555.32) (ISNI:0000 0000 8841 6246) 
773 0 |t Frontiers of Structural and Civil Engineering  |g vol. 19, no. 1 (Jan 2025), p. 22 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275181304/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275181304/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch