ASSESSING THE ROBUSTNESS OF FACIAL CLASSIFICATION METHODS IN THE BIOMETRIC IDENTIFICATION AREA

Zapisane w:
Opis bibliograficzny
Wydane w:International Multidisciplinary Scientific GeoConference : SGEM vol. 2, no. 1 (2025), p. 3-12
1. autor: Hiitter, Marek
Kolejni autorzy: Holubova, Véra, Ščurek, Radomir, Lukaštik, Jaroslav
Wydane:
Surveying Geology & Mining Ecology Management (SGEM)
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3275246906
003 UK-CbPIL
022 |a 1314-2704 
024 7 |a 10.5593/sgem2025/2.1/s07.01  |2 doi 
035 |a 3275246906 
045 2 |b d20250301  |b d20250430 
084 |a 176728  |2 nlm 
100 1 |a Hiitter, Marek  |u Faculty of Safety Engineering, VSB - Technical University of Ostrava, Czech Republic 
245 1 |a ASSESSING THE ROBUSTNESS OF FACIAL CLASSIFICATION METHODS IN THE BIOMETRIC IDENTIFICATION AREA 
260 |b Surveying Geology & Mining Ecology Management (SGEM)  |c 2025 
513 |a Conference Proceedings 
520 3 |a This article focuses on the effectiveness and robustness of facial classification systems in the field of biometric identification. Artificial intelligence is increasingly becoming a part of everyday life, with more and more users employing it across various domains. In the field of security, Al is used, for instance, in cybersecurity and risk analysis. It is also integrated into surveillance systems, particularly for facial recognition. A comparative analysis of three convolutional neural networks-GoogLeNet, ResNet-101, and DenseNet-201-was conducted in this study using the MATLAB simulation environment. These CNNs were pre-trained and subsequently tested from several perspectives, including performance, training time, and validation accuracy. The collected data served as a basis for comparing the networks with one another and were also used for further analysis of training and output evaluation. The results can form the basis for further research and can be compared with a possible study in which real photographs with higher noise were used. The results can also be applied to enhance electronic security systems, such as access control for mines and geologically significant sites. 
653 |a Face recognition 
653 |a Accuracy 
653 |a Classification systems 
653 |a Comparative analysis 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Classification 
653 |a Biometrics 
653 |a Pattern recognition 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Cybersecurity 
653 |a Training 
653 |a Facial recognition technology 
653 |a Risk analysis 
653 |a Access control 
653 |a Biometric identification 
653 |a Robustness 
653 |a Data collection 
653 |a Business metrics 
653 |a Security systems 
653 |a Biometry 
653 |a Algorithms 
653 |a Surveillance 
653 |a Surveillance systems 
653 |a Personal appearance 
653 |a Economic 
700 1 |a Holubova, Véra  |u Faculty of Safety Engineering, VSB - Technical University of Ostrava, Czech Republic 
700 1 |a Ščurek, Radomir  |u Faculty of Safety Engineering, VSB - Technical University of Ostrava, Czech Republic 
700 1 |a Lukaštik, Jaroslav  |u Faculty of Safety Engineering, VSB - Technical University of Ostrava, Czech Republic 
773 0 |t International Multidisciplinary Scientific GeoConference : SGEM  |g vol. 2, no. 1 (2025), p. 3-12 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275246906/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3275246906/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275246906/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch