Optimal pivot path of the simplex method for linear programming based on reinforcement learning

Guardado en:
Detalles Bibliográficos
Publicado en:Science China. Mathematics vol. 67, no. 6 (Jun 2024), p. 1263
Autor principal: Li, Anqi
Otros Autores: Guo, Tiande, Han, Congying, Li, Bonan, Li, Haoran
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275301848
003 UK-CbPIL
022 |a 1674-7283 
022 |a 1869-1862 
022 |a 2095-0535 
022 |a 1862-2763 
024 7 |a 10.1007/s11425-022-2259-1  |2 doi 
035 |a 3275301848 
045 2 |b d20240601  |b d20240630 
100 1 |a Li, Anqi  |u University of Chinese Academy of Sciences, School of Mathematical Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
245 1 |a Optimal pivot path of the simplex method for linear programming based on reinforcement learning 
260 |b Springer Nature B.V.  |c Jun 2024 
513 |a Journal Article 
520 3 |a Based on the existing pivot rules, the simplex method for linear programming is not polynomial in the worst case. Therefore, the optimal pivot of the simplex method is crucial. In this paper, we propose the optimal rule to find all the shortest pivot paths of the simplex method for linear programming problems based on Monte Carlo tree search. Specifically, we first propose the SimplexPseudoTree to transfer the simplex method into tree search mode while avoiding repeated basis variables. Secondly, we propose four reinforcement learning models with two actions and two rewards to make the Monte Carlo tree search suitable for the simplex method. Thirdly, we set a new action selection criterion to ameliorate the inaccurate evaluation in the initial exploration. It is proved that when the number of vertices in the feasible region is Cnm, our method can generate all the shortest pivot paths, which is the polynomial of the number of variables. In addition, we experimentally validate that the proposed schedule can avoid unnecessary search and provide the optimal pivot path. Furthermore, this method can provide the best pivot labels for all kinds of supervised learning methods to solve linear programming problems. 
653 |a Linear programming 
653 |a Apexes 
653 |a Simplex method 
653 |a Monte Carlo simulation 
653 |a Supervised learning 
653 |a Searching 
653 |a Polynomials 
700 1 |a Guo, Tiande  |u University of Chinese Academy of Sciences, School of Mathematical Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
700 1 |a Han, Congying  |u University of Chinese Academy of Sciences, School of Mathematical Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
700 1 |a Li, Bonan  |u University of Chinese Academy of Sciences, School of Mathematical Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
700 1 |a Li, Haoran  |u University of Chinese Academy of Sciences, School of Mathematical Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
773 0 |t Science China. Mathematics  |g vol. 67, no. 6 (Jun 2024), p. 1263 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275301848/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275301848/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch