A projected Newton algorithm based on chemically allowed interval for chemical equilibrium computations

Sparad:
Bibliografiska uppgifter
I publikationen:Frontiers of Chemical Science and Engineering vol. 18, no. 3 (Mar 2024), p. 27
Huvudupphov: Lu, Hongbin
Övriga upphov: Tao, Shaohui, Sun, Xiaoyan, Xia, Li, Xiang, Shuguang
Utgiven:
Springer Nature B.V.
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3275321335
003 UK-CbPIL
022 |a 2095-0179 
022 |a 2095-0187 
022 |a 1673-7369 
022 |a 1673-7474 
024 7 |a 10.1007/s11705-024-2390-8  |2 doi 
035 |a 3275321335 
045 2 |b d20240301  |b d20240331 
100 1 |a Lu, Hongbin  |u Qingdao University of Science and Technology, Institute of Process Systems Engineering, College of Chemical Engineering, Qingdao, China (GRID:grid.412610.0) (ISNI:0000 0001 2229 7077) 
245 1 |a A projected Newton algorithm based on chemically allowed interval for chemical equilibrium computations 
260 |b Springer Nature B.V.  |c Mar 2024 
513 |a Journal Article 
520 3 |a The chemical equilibrium equations utilized in reactive transport modeling are complex and nonlinear, and are typically solved using the Newton-Raphson method. Although this algorithm is known for its quadratic convergence near the solution, it is less effective far from the solution, especially for ill-conditioned problems. In such cases, the algorithm may fail to converge or require excessive iterations. To address these limitations, a projected Newton method is introduced to incorporate the concept of projection. This method constrains the Newton step by utilizing a chemically allowed interval that generates feasible descending iterations. Moreover, we utilize the positive continuous fraction method as a preconditioning technique, providing reliable initial values for solving the algorithms. The numerical results are compared with those derived using the regular Newton-Raphson method, the Newton-Raphson method based on chemically allowed interval updating rules, and the bounded variable least squares method in six different test cases. The numerical results highlight the robustness and efficacy of the proposed algorithm. 
653 |a Newton-Raphson method 
653 |a Algorithms 
653 |a Ill-conditioned problems (mathematics) 
653 |a Least squares method 
653 |a Equilibrium equations 
653 |a Preconditioning 
653 |a Effectiveness 
653 |a Environmental 
700 1 |a Tao, Shaohui  |u Qingdao University of Science and Technology, Institute of Process Systems Engineering, College of Chemical Engineering, Qingdao, China (GRID:grid.412610.0) (ISNI:0000 0001 2229 7077) 
700 1 |a Sun, Xiaoyan  |u Qingdao University of Science and Technology, Institute of Process Systems Engineering, College of Chemical Engineering, Qingdao, China (GRID:grid.412610.0) (ISNI:0000 0001 2229 7077) 
700 1 |a Xia, Li  |u Qingdao University of Science and Technology, Institute of Process Systems Engineering, College of Chemical Engineering, Qingdao, China (GRID:grid.412610.0) (ISNI:0000 0001 2229 7077) 
700 1 |a Xiang, Shuguang  |u Qingdao University of Science and Technology, Institute of Process Systems Engineering, College of Chemical Engineering, Qingdao, China (GRID:grid.412610.0) (ISNI:0000 0001 2229 7077) 
773 0 |t Frontiers of Chemical Science and Engineering  |g vol. 18, no. 3 (Mar 2024), p. 27 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275321335/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275321335/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch