Machine Learning Applications for Evaporation Predictions From Small Reservoirs: Potential Water Savings for Lower Rio Grande Valley, Texas

Shranjeno v:
Bibliografske podrobnosti
izdano v:ProQuest Dissertations and Theses (2025)
Glavni avtor: Abdullah, Syed Muhammad Fahad
Izdano:
ProQuest Dissertations & Theses
Teme:
Online dostop:Citation/Abstract
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3275325910
003 UK-CbPIL
020 |a 9798265410818 
035 |a 3275325910 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Abdullah, Syed Muhammad Fahad 
245 1 |a Machine Learning Applications for Evaporation Predictions From Small Reservoirs: Potential Water Savings for Lower Rio Grande Valley, Texas 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Local-scale reservoirs are important to regional water balance, but these are often overlooked. This study presents a robust machine learning (ML) approach leveraging reanalysis datasets to estimate daily evaporation for local-scale reservoirs in semi-arid South Texas. Selected models were trained with daily lake evaporation model (DLEM) estimates and used climatic and reservoir-specific properties as feature input variables. The multi-reservoirs training approach ensured applicable model generalization. Results show promising predictive performance with R² values ranging from 0.55–0.67 (testing) and 0.64–0.78 (validation), NSE values ranged from 0.54 0.67 (testing) and 0.64–0.78 (validation), and RMSE values ranged between 1.52–1.80 mm/day (testing) and 1.22–1.58 mm/day (validation). The findings highlight potential water savings of up to 2.1×105 ac-ft per year, which is equivalent to ~8% of the capacity of one major regional reservoir, if floating solar photovoltaic (PV) is deployed to cover 30% of its surface. 
653 |a Environmental engineering 
653 |a Hydrologic sciences 
653 |a Water resources management 
653 |a Computer science 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275325910/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275325910/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch