Terramycelium: a reference architecture for adaptive big data systems

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Big Data vol. 12, no. 1 (Nov 2025), p. 260
1. Verfasser: Ataei, Pouya
Weitere Verfasser: Atemkeng, Marcellin
Veröffentlicht:
Springer Nature B.V.
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3275425862
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01311-6  |2 doi 
035 |a 3275425862 
045 2 |b d20251101  |b d20251130 
100 1 |a Ataei, Pouya  |u Scholar Spark, Mount Albert, New Zealand 
245 1 |a Terramycelium: a reference architecture for adaptive big data systems 
260 |b Springer Nature B.V.  |c Nov 2025 
513 |a Journal Article 
520 3 |a Modern organizations generate and process unprecedented volumes of structured, semi-structured, and unstructured data from diverse sources, creating significant architectural and engineering challenges for traditional data processing systems. Industry analyses consistently report failure rates of 60-85% for Big Data projects, with architectural limitations identified as a primary contributing factor. Current reference architectures suffer from monolithic designs, inadequate cross-cutting concerns (security, privacy, metadata), and limited adaptability to evolving data ecosystems. This paper presents Terramycelium, a novel reference architecture for Big Data systems that addresses these limitations through a domain-driven, event-oriented approach. The architecture integrates principles from complex adaptive systems, domain-driven design, distributed systems, and event-driven architectures to enable autonomous domain-specific data ownership while maintaining system-wide coherence through asynchronous event communication. We developed Terramycelium following empirically grounded reference architecture guidelines and evaluated it through two complementary methods: a case-mechanism experiment and expert opinion assessment. The case-mechanism experiments demonstrated the architecture’s capability to process 1.693GB of data with 50-100 second latency, handle 771,305 streaming messages with 0.0000148 second ingestion latency, and maintain stable performance with 24% CPU utilization under high-volume scenarios. Expert evaluation (n=3, 10-32 years experience) validated the architecture’s innovative integration of domain-driven design with data engineering, while identifying implementation complexity and organizational readiness as adoption challenges. Terramycelium contributes a validated approach for building scalable, maintainable Big Data systems that addresses the limitations of existing monolithic architectures while aligning with modern software engineering practices. 
653 |a Data processing 
653 |a Software 
653 |a Experiments 
653 |a Metadata 
653 |a Big Data 
653 |a Data systems 
653 |a Latency 
653 |a Engineering 
653 |a Architecture 
653 |a Privacy 
653 |a Limitations 
653 |a Cross cutting 
653 |a Coherence 
653 |a Machine learning 
653 |a Adaptive systems 
653 |a Ingestion 
653 |a Ownership 
653 |a Network latency 
653 |a Decentralization 
653 |a Unstructured data 
653 |a Complexity 
653 |a Building engineers 
700 1 |a Atemkeng, Marcellin  |u Department of Mathematics, Rhodes University, Grahamstown, South Africa (GRID:grid.91354.3a) (ISNI:0000 0001 2364 1300); National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa (GRID:grid.91354.3a) 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Nov 2025), p. 260 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275425862/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3275425862/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275425862/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch