Non-Fick mechanical-diffusion with space-dependent diffusivity and time-domain finite element method for transient impact responses analysis

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of the Brazilian Society of Mechanical Sciences and Engineering vol. 48, no. 1 (Jan 2026), p. 10
Autor principal: Xu, Zhipeng
Otros Autores: Guo, Huili, Shang, Fulin
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275425906
003 UK-CbPIL
022 |a 1678-5878 
022 |a 1806-3691 
022 |a 0100-7386 
022 |a 1678-3026 
022 |a 1678-4820 
024 7 |a 10.1007/s40430-025-05995-y  |2 doi 
035 |a 3275425906 
045 2 |b d20260101  |b d20260131 
100 1 |a Xu, Zhipeng  |u Lanzhou Jiaotong University, School of Civil Engineering, Lanzhou, People’s Republic of China (GRID:grid.411290.f) (ISNI:0000 0000 9533 0029) 
245 1 |a Non-Fick mechanical-diffusion with space-dependent diffusivity and time-domain finite element method for transient impact responses analysis 
260 |b Springer Nature B.V.  |c Jan 2026 
513 |a Journal Article 
520 3 |a The mechanical-diffusion coupling behavior between molar concentration and strain fields have aroused great interest in biosensors, artificial muscles and actuators of adaptive structures and so on. In such nonuniform concentration environment, the space-dependent diffusivity verified in experimental observation is still not considered. Present work aims to establish the non-Fick mechanical-diffusion model with space-dependent diffusivity. To numerically solve the nonlinear governing equations, the time-domain finite element method is developed based on the principle of virtual work. The newly established model and numerical approach are applied to investigate impact responses of a thick circular plate with space-dependent diffusivity under transient chemical shock loadings. With the increase in the space-dependent diffusivity parameter, the dimensionless results reveal that the diffusive wave propagation is proportionally accelerated. And the nonlinear mechanical/chemical responses are maximally enhanced. 
653 |a Finite element method 
653 |a Circular plates 
653 |a Laplace transforms 
653 |a Equilibrium 
653 |a Time domain analysis 
653 |a Phase transitions 
653 |a Impact analysis 
653 |a Diffusion models 
653 |a Mathematical models 
653 |a Wave propagation 
653 |a Finite element analysis 
653 |a Diffusivity 
653 |a Biosensors 
653 |a Mechanics 
653 |a Actuators 
653 |a Strain 
653 |a Smart structures 
653 |a Artificial muscles 
700 1 |a Guo, Huili  |u Lanzhou Jiaotong University, School of Civil Engineering, Lanzhou, People’s Republic of China (GRID:grid.411290.f) (ISNI:0000 0000 9533 0029) 
700 1 |a Shang, Fulin  |u Xi’an Jiaotong University, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, People’s Republic of China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
773 0 |t Journal of the Brazilian Society of Mechanical Sciences and Engineering  |g vol. 48, no. 1 (Jan 2026), p. 10 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275425906/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3275425906/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275425906/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch