Fusing remote and social sensing data for flood impact mapping

Guardado en:
Bibliografiske detaljer
Udgivet i:AI Magazine vol. 45, no. 4 (Dec 1, 2024), p. 486-502
Hovedforfatter: Akhtar, Zainab
Andre forfattere: Qazi, Umair, El‐Sakka, Aya, Sadiq, Rizwan, Ofli, Ferda, Imran, Muhammad
Udgivet:
John Wiley & Sons, Inc.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3275470976
003 UK-CbPIL
022 |a 0738-4602 
022 |a 2371-9621 
024 7 |a 10.1002/aaai.12196  |2 doi 
035 |a 3275470976 
045 2 |b d20241201  |b d20250331 
084 |a 15019  |2 nlm 
100 1 |a Akhtar, Zainab  |u Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar 
245 1 |a Fusing remote and social sensing data for flood impact mapping 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2024 
513 |a Journal Article 
520 3 |a The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state‐of‐the‐art natural language processing and computer vision models to identify flood exposure, ground‐level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real‐world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground‐truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard‐hit districts and enhancing disaster response. 
610 4 |a United Nations Development Programme United Nations--UN 
651 4 |a Pakistan 
653 |a Disaster relief 
653 |a Local authorities 
653 |a Humanitarianism 
653 |a Data sources 
653 |a Computer vision 
653 |a Mapping 
653 |a Natural disasters 
653 |a Organizational effectiveness 
653 |a Remote sensing 
653 |a Spatial data 
653 |a Emergency preparedness 
653 |a Development programs 
653 |a Situational awareness 
653 |a Data 
653 |a Floods 
653 |a Data processing 
653 |a Deep learning 
653 |a Flood damage 
653 |a Flood mapping 
653 |a Social networks 
653 |a Disaster management 
653 |a Hydrologic data 
653 |a Damage 
653 |a Statistical analysis 
653 |a Needs analysis 
653 |a Infrastructure 
653 |a Artificial intelligence 
653 |a Truth 
653 |a Natural language processing 
653 |a Geographic information systems 
653 |a Social 
700 1 |a Qazi, Umair  |u Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar 
700 1 |a El‐Sakka, Aya  |u Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar 
700 1 |a Sadiq, Rizwan  |u Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar 
700 1 |a Ofli, Ferda  |u Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar 
700 1 |a Imran, Muhammad  |u Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar 
773 0 |t AI Magazine  |g vol. 45, no. 4 (Dec 1, 2024), p. 486-502 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275470976/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3275470976/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275470976/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch