MARC

LEADER 00000nab a2200000uu 4500
001 3275472721
003 UK-CbPIL
022 |a 2699-9307 
024 7 |a 10.1002/anbr.202400120  |2 doi 
035 |a 3275472721 
045 0 |b d20250201 
100 1 |a Torres Gouveia, Maria Eduarda  |u Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA 
245 1 |a Eggshell‐Based Unconventional Biomaterials for Medical Applications 
260 |b John Wiley & Sons, Inc.  |c Feb 1, 2025 
513 |a Journal Article 
520 3 |a Eggshells are one of the most abundant byproducts of food processing waste. Each discarded eggshell represents a missed opportunity to convert a no‐cost waste material into a valuable product. Beyond their economic practicality and widespread availability, eggshells possess unique biological and chemical properties that support cell differentiation. Their composition includes biologically active compounds, essential trace elements, and collagenous and noncollagenous elements, mimicking the components of bones, teeth, and skin. Additionally, eggshells serve as a suitable precursor for synthesizing hydroxyapatite, calcium carbonate (CaCO3), and β‐tricalcium phosphate. Eggshells can be utilized on their own or as derived materials to produce regenerative biocomposite scaffolds for tissue engineering. These scaffolds often exhibit high porosity, excellent biocompatibility, degradability, and mechanical properties. Eggshells and their derivatives have also been employed as carriers for targeted drug delivery systems and in electrochemical biosensors. Eggshells serve as a versatile biomaterial, adept at not only addressing practical gaps but also bridging the divide between sophistication and ease of production. In this review, the chemical composition of eggshells and their numerous applications in hard and soft tissue regeneration, biomolecule delivery, and biosensor development are discussed highlighting their innovative and unconventional use as a natural biomaterial providing solutions for unmet clinical needs. 
651 4 |a United States--US 
651 4 |a China 
653 |a Tissue engineering 
653 |a Mechanical properties 
653 |a Nanocomposites 
653 |a Calcium phosphates 
653 |a Nanoparticles 
653 |a Wound healing 
653 |a Hydroxyapatite 
653 |a Biosensors 
653 |a Copper 
653 |a Differentiation (biology) 
653 |a Biomedical materials 
653 |a Metabolism 
653 |a Biological activity 
653 |a Tricalcium phosphate 
653 |a Plastic surgery 
653 |a Collagen 
653 |a Regeneration (physiology) 
653 |a Food processing 
653 |a Bioactive compounds 
653 |a Biocompatibility 
653 |a Drug delivery 
653 |a Mineralization 
653 |a Trace elements 
653 |a Hydrogels 
653 |a Diabetes 
653 |a Bones 
653 |a Egg shells 
653 |a Calcium carbonate 
653 |a Cell differentiation 
653 |a Biomaterials 
653 |a Chemical composition 
653 |a Composite materials 
653 |a Angiogenesis 
653 |a Biomolecules 
653 |a Membranes 
653 |a Degradability 
653 |a Food processing industry wastes 
653 |a Porosity 
653 |a Regenerative medicine 
653 |a 3-D printers 
653 |a Drug delivery systems 
653 |a Chemical properties 
653 |a Antimicrobial agents 
653 |a Soft tissues 
653 |a Eggs 
653 |a Scaffolds 
653 |a Skin & tissue grafts 
700 1 |a Milhans, Charles  |u Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA 
700 1 |a Gezek, Mert  |u Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA 
700 1 |a Camci‐Unal, Gulden  |u Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA 
773 0 |t Advanced NanoBiomed Research  |g vol. 5, no. 2 (Feb 1, 2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275472721/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3275472721/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275472721/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch