Probing Particle Physics with Gravitational Waves

Gardado en:
Detalles Bibliográficos
Publicado en:PQDT - Global (2025)
Autor Principal: Grüber, David
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275477329
003 UK-CbPIL
020 |a 9798265423122 
035 |a 3275477329 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Grüber, David 
245 1 |a Probing Particle Physics with Gravitational Waves 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Domain walls, two-dimensional topological defects that may emerge in spontaneous symmetry breaking phase transitions in the early universe, serve as a bridge between cosmology and particle physics and might therefore provide a unique window to probe theoriesbeyond the Standard Model of Particle Physics. In a cosmological setting, domain wallswould form extended networks, which typically approach a scaling regime with roughly asingle wall per Hubble patch. Stable domain walls that were to survive until the presentday, however, are heavily constrained by astrophysical observations to be very light.Walls, on the other hand, could also decay earlier in the evolution of the universe throughvarious mechanisms, in which case they could evade these strict limits on their massscale. This is the case, for instance, for biased domain walls that are predicted in manyrelevant beyond standard model scenarios. These may then have played a more relevant cosmological role and might therefore be easier for us to detect. A crucial elementin understanding possible observational signatures of domain wall networks is a precisecharacterization of their dynamics. This thesis explores the theoretical, numerical, and observational aspects of domain wall evolution, with a particular focus on their gravitationalwave signatures.We begin with an overview of the cosmological standard model and the role of scalarfields in early universe physics, emphasizing their connection to topological defects. Weexplore the formation of such defects and discuss the state-of-the-art understanding ofdomain wall physics. In this context, we review the Velocity-dependent One-Scale model,which has evolved to be the standard analytical model in describing large-scale dynamicsof domain wall networks, as well as the more recent Parameter-Free Model. 
653 |a Telescopes 
653 |a Nuclear physics 
653 |a Nuclear research 
653 |a Gravity 
653 |a Scale models 
653 |a Dark matter 
653 |a Symmetry 
653 |a Phase transitions 
653 |a Spacetime 
653 |a Gravitational waves 
653 |a Theory of relativity 
653 |a Geometry 
653 |a Radiation 
653 |a Particle physics 
653 |a Dark energy 
653 |a Universe 
653 |a Cosmology 
653 |a Astrophysics 
653 |a Optics 
653 |a Theoretical physics 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275477329/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275477329/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch