Job Shop Scheduling Problem with Limited Multi-Load Transportation Resources

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:PQDT - Global (2025)
Váldodahkki: Fontes, Beatriz
Almmustuhtton:
ProQuest Dissertations & Theses
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3275478050
003 UK-CbPIL
020 |a 9798265425676 
035 |a 3275478050 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Fontes, Beatriz 
245 1 |a Job Shop Scheduling Problem with Limited Multi-Load Transportation Resources 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a As manufacturing processes grow more complex, efficient scheduling and resource coordination have become central challenges for operations managers across industries.This dissertation addresses the Job Shop Scheduling Problem with Transportation (JSSPT), extending the traditional framework by incorporating realistic transportation constraints, specifically focusing on Automated Guided Vehicles (AGVs) with multi-load capacity. While most prior work assumes single-load vehicles, our study introduces and investigates a more practical scenario where the AGV fleet is limited and each vehicle can transport multiple jobs simultaneously.We develop a Biased Random-Key Genetic Algorithm (BRKGA) tailored for JSSPT with multi-load AGVs and validate its performance on benchmark instances. Computational results demonstrate that multi-load AGVs lead to substantial improvements in system performance, notably reducing makespan by minimizing empty trips and better synchronizing transportation with production. We also analyze the trade-off between increasing fleet size and vehicle capacity, finding that a smaller fleet of higher-capacity AGVs can outperform a larger fleet of single-load vehicles, yielding additional benefits such as reduced floor space and lower operational costs.Our findings underscore the importance of integrated scheduling, as the configuration and coordination of transportation resources directly influence system efficiency. This dissertation fills an important gap in the literature by formulating and solving the JSSPT with multi-load AGVs and provides practical insights for managers seeking to optimize operational processes. 
653 |a Load 
653 |a Mathematical programming 
653 |a Capital costs 
653 |a Scheduling 
653 |a Motivation 
653 |a Integer programming 
653 |a Genetic algorithms 
653 |a Decision making 
653 |a Benchmarks 
653 |a Flexibility 
653 |a Robots 
653 |a Job shops 
653 |a Linear programming 
653 |a Breakdowns 
653 |a Operations management 
653 |a Manufacturing 
653 |a Materials handling 
653 |a Vehicles 
653 |a Artificial intelligence 
653 |a Industrial engineering 
653 |a Management 
653 |a Operations research 
653 |a Robotics 
653 |a Transportation 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275478050/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275478050/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch