Architectural Design for the Integration of Federated Learning Strategies: The NOUS Project Use Case

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PQDT - Global (2025)
1. Verfasser: Ferreira, António Oliveira
Veröffentlicht:
ProQuest Dissertations & Theses
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3275478299
003 UK-CbPIL
020 |a 9798265420848 
035 |a 3275478299 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Ferreira, António Oliveira 
245 1 |a Architectural Design for the Integration of Federated Learning Strategies: The NOUS Project Use Case 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a In 2016, Federated Learning (FL) was introduced as a new privacy-preserving distributed machine learning paradigm, functional especially in edge computing environments. However, this paradigm does not take into consideration the growing necessity to guarantee that Human-in-theLoop (HITL) methodologies are robustly integrated into AI systems, as standardized integration approaches remain absent. Therefore, to bridge this gap, this thesis proposes a comprehensive, modular reference architecture for introducing HITL strategies into FL workflows at the edge, using the NOUS project (an EU initiative for next-generation cloud services) as a use case.Our work begins with a systematic literature review and gap analysis to characterize the current practices and identify the core challenges in this research domain. From this foundation, we derive architectural high-level goals alongside functional and non-functional requirements. From this, we then present the HITL-FL framework, which utilizes C4 models (System Context, Container, Component). This framework includes a dedicated Human Oversight & Interaction Hub, secure annotation interfaces, task routing, ethical validators and operational loops for active learning and model governance.We validate the architecture through three pillars: systematic compliance analysis against our requisites; mapping using the NOUS project and its Use Case #2 (Energy Prediction & Data Lifecycle Management); and qualitative expert reviews with NOUS architects. Validation results showcase strong support for comprehensive human oversight and alignment with trustworthiness, privacy, security, and usability requirements while also uncovering limitations and design challenges for future work.Through this process, this research delivers a foundational blueprint for building humancentric, transparent, federated AI systems that foster a responsible collaboration between humans and AI in complex edge ecosystems. 
653 |a Innovations 
653 |a Machine learning 
653 |a Artificial intelligence 
653 |a Edge computing 
653 |a Decision making 
653 |a Architecture 
653 |a Privacy 
653 |a Ethics 
653 |a Cloud computing 
653 |a High performance computing 
653 |a Engineering 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275478299/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275478299/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch