Digital Forensics and AI: Artifact Analysis and Using AI in the Forensics Domain

Gardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor Principal: Walker, Clinton Joel
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275478547
003 UK-CbPIL
020 |a 9798265412713 
035 |a 3275478547 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Walker, Clinton Joel 
245 1 |a Digital Forensics and AI: Artifact Analysis and Using AI in the Forensics Domain 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Digital Forensics (DF) is a field of forensic science focusing on the acquisition, authentication, and analysis of digital evidence while maintaining integrity of that data. DF analysts use forensic tools to parse large volumes of data for investigations and depend on them for identification of pertinent digital evidence in vast amounts of data. Keeping up with innovations and ever-expanding data volumes is a constant challenge for these investigators. The prevalence of Artificial Intelligence (AI) in everyday computing is rapidly expanding, with the use of Machine Learning (ML) and Large Language Models (LLM)s becoming increasingly commonplace. Innovations in technology bring new challenges that need to be addressed, especially in the artifact discovery and analysis that enables DF practitioners. Exploring how AI impacts DF is vital for moving forward in digital investigation in an AI-centric future. This works offers three contributions to the intersection of DF and AI, exploring both the forensic analysis of AI frameworks and how AI can be used to assist DF analysts. The first contribution is a primary account of the injection and detection of foreign data of the Hierarchical Data Format 5 (HDF5) file format as it is utilized by the ML framework TensorFlow 2 (TF2). The second is a primary account of artifact analysis of the multi-agent AI framework by Microsoft called AutoGen. The third is assessing the viability of using LLMs to create new plugins for the forensic tools Autopsy and Volatility 3 using readily available online LLMs, namely OpenAI’s GPT models, Anthropic’s Claude, Google’s Gemini, and DeepSeek. 
653 |a Software 
653 |a Malware 
653 |a Artificial intelligence 
653 |a Privacy 
653 |a Large language models 
653 |a Computer forensics 
653 |a Social networks 
653 |a Forensic sciences 
653 |a Web studies 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275478547/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275478547/fulltextPDF/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://repository.lsu.edu/gradschool_dissertations/6884/