Application of Two Frameworks-Physics and Signal Processing-As a Basis for Efficient Designs in Physical Computing

Uloženo v:
Podrobná bibliografie
Vydáno v:ProQuest Dissertations and Theses (2025)
Hlavní autor: Black, Eric C.
Vydáno:
ProQuest Dissertations & Theses
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3275479463
003 UK-CbPIL
020 |a 9798263326142 
035 |a 3275479463 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Black, Eric C. 
245 1 |a Application of Two Frameworks-Physics and Signal Processing-As a Basis for Efficient Designs in Physical Computing 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a This dissertation investigates the integration of physics and signal processing frameworks to advance efficient designs in physical computing, encompassing analog circuitry, neuromorphic, optical, and quantum systems. By leveraging the continuous nature of physical variables (characterized by ℵ1 cardinality) in contrast to discrete (ℵ0-based) digital systems, this work proposes a Physical-Computing Thesis, paralleling the Church-Turing Thesis, which highlights computational equivalences unique to physical systems and underscores that many physical computing phenomena cannot be fully and efficiently replicated by classical digital Turing machines. Drawing on a holographic principle, the thesis establishes correspondences between continuous and discrete signals and systems, revealing opportunities for superior computational efficiency. Key contributions include the identification of four types of Linear Time-Invariant (LTI) breaks, novel efficiency metrics, and their novel application to practical systems such as analog filters, differential pairs, synchronized chaotic circuits, and frequency synthesizers. My thesis demonstrates how physical computing can exploit nonlinearities and time-variance (what I call LTI-breaking) to achieve matter-energy-information efficiency, validated through my theoretical advancements and patented designs. By harmonizing historical insights from Faraday and Maxwell with modern signal processing, this work lays a foundation for future innovations in physical computing, challenging the limitations of the digital-centric paradigm. 
653 |a Signal processing 
653 |a Symmetry 
653 |a Philosophy of science 
653 |a Circuits 
653 |a Energy 
653 |a Information theory 
653 |a Electrical engineering 
653 |a System theory 
653 |a Quantum computing 
653 |a Physics 
653 |a Partial differential equations 
653 |a Frequency synthesizers 
653 |a Collectors 
653 |a Computer engineering 
653 |a Design 
653 |a Kalman filters 
653 |a Applied mathematics 
653 |a Computer science 
653 |a Mathematics 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275479463/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275479463/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch