Distributed Multi-Antenna Systems Using 1-Bit Radio-Over-Fiber

Guardado en:
Detalles Bibliográficos
Publicado en:PQDT - Global (2025)
Autor principal: Aabel, Lise
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275479697
003 UK-CbPIL
020 |a 9798265416353 
035 |a 3275479697 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Aabel, Lise 
245 1 |a Distributed Multi-Antenna Systems Using 1-Bit Radio-Over-Fiber 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Distributed multiple-input multiple-output (D-MIMO) is a promising approach to improve the wireless mobile network coverage and meet increasing capacity demands. Its foundation builds upon the ability to cooperatively utilize spatially distributed radio access nodes to exploit macro diversity. However, in order to implement spatial multiplexing, precise phase coherence at carrier frequency is required across all cooperating radio nodes. This poses a challenging implementation problem, since a radio typically uses a local oscillator to generate the carrier frequency, and each local oscillator is associated with a frequency offset and phase noise. In this thesis, we propose a D-MIMO architecture that eliminates local oscillators at the radio heads altogether, and implements instead digital frequency up- and down-conversion in a central processing unit, such that the radio frequency signals are phase-synchronized at the remote radio heads. This architecture relies on fiber-optic fronthaul, over which 1-bit signals are transferred.First, we introduce a D-MIMO transceiver architecture that employs 1-bit quantization to reduce power consumption and facilitate efficient fiber-optic fronthaul. Phase-coherence is demonstrated in a wireless multi-user measurement implementing reciprocity-based precoding. Second, since this architecture relies on significant oversampling to battle the distortion introduced by the 1-bit converters, we investigate the tradeoff between oversampling in the spatial or temporal domain, when the total fronthaul rate is constrained. This sheds light on the minimum fronthaul rate required in a certain deployment for our D-MIMO architecture to outperform standard co-located MIMO architecture. Third, we present a testbed that we use to investigate the receiver architecture effects on multi-user scenarios. We find that our architecture shows greater uplink sensitivity to multi-user interference than a conventional receiver, and that user power control can mitigate this sensitivity. 
653 |a Receivers & amplifiers 
653 |a Wireless networks 
653 |a Quality standards 
653 |a Signal to noise ratio 
653 |a Communication 
653 |a Signal processing 
653 |a Antennas 
653 |a Public radio 
653 |a Decomposition 
653 |a Design 
653 |a Energy efficiency 
653 |a Subscriptions 
653 |a Transmitters 
653 |a Field programmable gate arrays 
653 |a Wireless access points 
653 |a Electrical engineering 
653 |a Film studies 
653 |a Sustainability 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275479697/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275479697/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://research.chalmers.se/en/publication/548000