Differentiable 3D Scene Representations With Point-Based Neural Methods

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:ProQuest Dissertations and Theses (2025)
Kaituhi matua: Börcsök, Barnabás Barney
I whakaputaina:
ProQuest Dissertations & Theses
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3275489203
003 UK-CbPIL
020 |a 9798263351267 
035 |a 3275489203 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Börcsök, Barnabás Barney 
245 1 |a Differentiable 3D Scene Representations With Point-Based Neural Methods 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a This thesis explores reconstructing explicit scene geometry via geometry particles carrying local Lagrangian patches. We formulate a signed distance field as a weighted sum of moving basis functions and describe an optimization framework to fit target shapes in both 2D and 3D. Experiments on canonical geometry meshes show that with a modest number of particles, our approach can capture coarse geometric structures while providing intuitive control and interpretable local geometry images in a storage-efficient representation. Although these preliminary results do not yet match state-of-the-art accuracy, they highlight the promise of a particle-based, differentiable explicit representation that is suitable to inspire further work in a vast array of workflow improvements from digital sculpting to generative modeling. We conclude by discussing avenues for further research on improving particle placement, blending strategies, and interactive editing capabilities. 
653 |a Computer graphics 
653 |a Animation 
653 |a Geometry 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Computer science 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275489203/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275489203/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch