Efficient Hardware Architectures for High-Throughput Streaming Data RF and AI-Driven Communication Systems

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:ProQuest Dissertations and Theses (2025)
मुख्य लेखक: Mao, Xiangyu
प्रकाशित:
ProQuest Dissertations & Theses
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3275489668
003 UK-CbPIL
020 |a 9798263344122 
035 |a 3275489668 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Mao, Xiangyu 
245 1 |a Efficient Hardware Architectures for High-Throughput Streaming Data RF and AI-Driven Communication Systems 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a This thesis investigates novel hardware architectures to address the growing computational demands of next-generation wireless communication and AI systems. With the advent of 5G, the emergence of 6G, and the rapid expansion of AI-driven applications, modern RF systems must process increasingly complex data streams in real time while maintaining low latency, high throughput, and energy efficiency. However, conventional computing architectures, particularly those based on the traditional Von Neumann model, face fundamental limitations in data movement, memory bandwidth, and scalability, motivating the need for alternative computing paradigms.To tackle these challenges, this dissertation proposes a series of hardware innovations across three major domains: RF system emulation, low-precision beamforming, and in-memory computing for automotive radar systems. First, an FPGA-based real-time RF radar emulator is introduced using a Direct Path Computing Model, which reduces computational complexity from O(M3) to O(M2) and enables efficient, high-throughput waveform simulation across diverse RF environments. Second, an ultra-low bit precision (2-bit) digital Linear Embedded Beamforming system is presented, incorporating a novel quantization compensation technique to significantly reduce power consumption and resource utilization without sacrificing accuracy. Finally, a Processing-in-Memory-based hardware architecture is developed for AI-enhanced automotive radar, integrating a configurable in-memory computing engine with an all-to-all BENES on-chip network to enable scalable, energy-efficient, and low-latency processing of radar data streams.Together, these contributions establish a unified hardware-accelerated framework for intelligent RF communication in the era of AI and big data. The proposed architectures developed in this work advance the state-of-the-art in real-time RF emulation, energy-efficient beamforming, and memory-centric AI computation, paving the way for intelligent, high-performance wireless systems capable of meeting the demands of 6G and beyond. 
653 |a Wireless communications 
653 |a Artificial intelligence 
653 |a Radio frequency 
653 |a Bandwidths 
653 |a Signal processing 
653 |a Data processing 
653 |a Energy efficiency 
653 |a Transmitters 
653 |a Workloads 
653 |a Data transmission 
653 |a Internet of Things 
653 |a Computer science 
653 |a Electrical engineering 
653 |a Information technology 
653 |a Sustainability 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275489668/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275489668/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch