Reliable Decision-Making Under Uncertainty Through the Lens of Statistics and Optimization

Uloženo v:
Podrobná bibliografie
Vydáno v:ProQuest Dissertations and Theses (2025)
Hlavní autor: Wang, Jie
Vydáno:
ProQuest Dissertations & Theses
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3275490271
003 UK-CbPIL
020 |a 9798263339913 
035 |a 3275490271 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Wang, Jie 
245 1 |a Reliable Decision-Making Under Uncertainty Through the Lens of Statistics and Optimization 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a In this thesis, we develop computationally efficient algorithms with statistical guaranteesfor problems of decision-making under uncertainty, particularly in the presence of largescale, noisy, and high-dimensional data. In Chapter 2, we propose a kernelized projectedWasserstein distance for high-dimensional hypothesis testing, which finds the nonlinearmapping that maximizes the discrepancy between projected distributions. In Chapter 3, weprovide an in-depth analysis of the computational and statistical guarantees of the kernelizedprojected Wasserstein distance. In Chapter 4, we study the variable selection problem intwo-sample testing, aiming to select the most informative variables to determine whethertwo datasets follow the same distribution. In Chapter 5, we present a novel frameworkfor distributionally robust stochastic optimization (DRO), which seeks an optimal decisionthat minimizes expected loss under the worst-case distribution within a specified set. Thisworst-case distribution is modeled using a variant of the Wasserstein distance based onentropic regularization. In Chapter 6, we incorporate Phi-divergence regularization into theinfinity-type Wasserstein DRO, which is a formulation particularly useful for adversarialmachine learning tasks. Chapter 7 concludes with an overview of promising future researchdirections. 
653 |a Sparsity 
653 |a Big Data 
653 |a Sample size 
653 |a Statistics 
653 |a Optimization techniques 
653 |a Normal distribution 
653 |a Decision making 
653 |a Plot (Narrative) 
653 |a Feature selection 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275490271/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275490271/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch