A Novel Image-Based Method for Measuring Spray Pattern Distribution in a Mechanical Patternator

Guardat en:
Dades bibliogràfiques
Publicat a:Agriculture vol. 15, no. 22 (2025), p. 2337-2356
Autor principal: Çomaklı Mustafa
Altres autors: Sayıncı Bahadır
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3275490521
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15222337  |2 doi 
035 |a 3275490521 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Çomaklı Mustafa  |u Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Türkiye 
245 1 |a A Novel Image-Based Method for Measuring Spray Pattern Distribution in a Mechanical Patternator 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The uniform distribution of pesticides via spraying is of crucial importance in achieving effective and environmentally sustainable crop protection. Conventional assessment techniques such as sensor-based patternators and electronic monitoring systems are often expensive, complex to calibrate, and limited in adaptability to different nozzle geometries or operating conditions. The present study introduces and validates a low-cost, image-based method as an alternative to the traditional volumetric approach for evaluating spray pattern uniformity in mechanical patternators. Spray tests were conducted under controlled laboratory conditions in order to minimize environmental variability and ensure repeatability. The present study compared two complementary methods—volumetric measurement and image analysis—to evaluate their agreement and accuracy in determining spray deposition profiles. The findings, which included correlation and multivariate tests, indicated a robust linear relationship between the two approaches (r = 0.990–0.999), with deviations falling below ±3% and no statistically significant multivariate differences (p = 0.067). The image-based approach effectively captured both central and edge regions of the spray pattern, demonstrating precision comparable to volumetric readings. The findings confirm that image analysis provides an accurate, reliable, and repeatable means of assessing spray uniformity without reliance on costly sensor technologies. The proposed method offers a practical and scalable alternative for laboratory calibration, nozzle classification, and research applications focused on optimizing agricultural spraying performance. 
653 |a Measurement methods 
653 |a Pesticides 
653 |a Plant protection 
653 |a Nozzles 
653 |a Software 
653 |a Accuracy 
653 |a Agricultural production 
653 |a Reproducibility 
653 |a Spray deposition 
653 |a Laboratories 
653 |a Monitoring systems 
653 |a Image processing 
653 |a Digital imaging 
653 |a Statistical analysis 
653 |a Spraying 
653 |a Image analysis 
653 |a Sensors 
653 |a Multivariate analysis 
653 |a Methods 
653 |a Sustainable agriculture 
653 |a Hydraulics 
653 |a Environmental 
700 1 |a Sayıncı Bahadır  |u Department of Biosystems Engineering, Faculty of Agriculture and Natural Sciences, Bilecik Şeyh Edebali University, 11200 Bilecik, Türkiye; bahadir.sayinci@bilecik.edu.tr 
773 0 |t Agriculture  |g vol. 15, no. 22 (2025), p. 2337-2356 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275490521/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275490521/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275490521/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch