Comparison of the Applicability of Mainstream Objective Circulation Type Classification Methods in China

Guardado en:
書目詳細資料
發表在:Atmosphere vol. 16, no. 11 (2025), p. 1231-1249
主要作者: Ma Minjin
其他作者: Chen, Ran, Zhang Xingyu
出版:
MDPI AG
主題:
在線閱讀:Citation/Abstract
Full Text + Graphics
Full Text - PDF
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

MARC

LEADER 00000nab a2200000uu 4500
001 3275501601
003 UK-CbPIL
022 |a 2073-4433 
024 7 |a 10.3390/atmos16111231  |2 doi 
035 |a 3275501601 
045 2 |b d20250101  |b d20251231 
084 |a 231428  |2 nlm 
100 1 |a Ma Minjin 
245 1 |a Comparison of the Applicability of Mainstream Objective Circulation Type Classification Methods in China 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Circulation type classification (CTC) is an important method in atmospheric sciences, which reveals the relationship between atmospheric circulation and regional weather and climate. Accurate circulation classification helps to improve weather forecasting accuracy and supports climate change research. China has complex topography and significant spatiotemporal variability in its circulation patterns, making the study of circulation type classification in this region highly significant. This study aims to evaluate the applicability of several mainstream objective CTC methods in the China region. We applied methods including T-mode principal component analysis (PCT), Ward linkage, K-means, and Self-Organizing Maps (SOM) to classify the sea-level pressure daily mean fields from 1993 to 2023 in the study area, and compared the classification results in terms of internal metrics, continuity, seasonal variation, separability of related meteorological variables (e.g., temperature, precipitation), and stability to spatiotemporal resolution. The results show that each method has its advantages in different contexts, with the K-means method showing the best overall performance. Additionally, an optimized approach combining PCT and K-means is proposed. 
651 4 |a China 
653 |a Weather forecasting 
653 |a Climate change 
653 |a Islands 
653 |a Seasonal variation 
653 |a Classification 
653 |a Forecast accuracy 
653 |a Principal components analysis 
653 |a Atmospheric circulation 
653 |a Weather 
653 |a Sea level pressure 
653 |a Seasonal variations 
653 |a Climatic classifications 
653 |a Atmospheric sciences 
653 |a Circulation patterns 
653 |a Precipitation 
653 |a Climate and weather 
653 |a Linkage analysis 
653 |a Self organizing maps 
653 |a Circulation 
653 |a Climate change research 
653 |a Circulation types 
653 |a Methods 
700 1 |a Chen, Ran 
700 1 |a Zhang Xingyu 
773 0 |t Atmosphere  |g vol. 16, no. 11 (2025), p. 1231-1249 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275501601/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275501601/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275501601/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch