The Fourier Regularization for Solving a Cauchy Problem for the Laplace Equation with Uncertainty

Guardado en:
Detalles Bibliográficos
Publicado en:Axioms vol. 14, no. 11 (2025), p. 805-827
Autor principal: Liu, Xiaoya
Otros Autores: He Yiliang, Yang, Hong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275501668
003 UK-CbPIL
022 |a 2075-1680 
024 7 |a 10.3390/axioms14110805  |2 doi 
035 |a 3275501668 
045 2 |b d20250101  |b d20251231 
084 |a 231430  |2 nlm 
100 1 |a Liu, Xiaoya  |u School of Mathematical Sciences, Gansu Minzu Normal University, Gannan 747000, China; 0200029@gnun.edu.cn 
245 1 |a The Fourier Regularization for Solving a Cauchy Problem for the Laplace Equation with Uncertainty 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The Laplace equation is an important partial differential equation, typically used to describe the properties of steady-state distributions or passive fields in physical phenomena. Its Cauchy problem is one of the classic, serious, ill-posed problems, characterized by the fact that minor disturbances in the data can lead to significant errors in the solution and lack stability. Secondly, the determination of the parameters of the classical Laplace equation is difficult to adapt to the requirements of complex applications. For this purpose, in this paper, the Laplace equation with uncertain parameters is defined, and the uncertainty is represented by fuzzy numbers. In the case of granular differentiability, it is transformed into a granular differential equation, proving its serious ill-posedness. To overcome the ill-posedness, the Fourier regularization method is used to stabilize the numerical solution, and the stability estimation and error analysis between the regularization solution and the exact solution are given. Finally, numerical examples are given to illustrate the effectiveness and practicability of this method. 
653 |a Regularization 
653 |a Partial differential equations 
653 |a Fuzzy sets 
653 |a Iterative methods 
653 |a Inverse problems 
653 |a Cauchy problems 
653 |a Ill posed problems 
653 |a Exact solutions 
653 |a Regularization methods 
653 |a Error analysis 
653 |a Stability 
653 |a Integral equations 
653 |a Parameter uncertainty 
653 |a Laplace equation 
700 1 |a He Yiliang  |u Department of Basic Education, Xinjiang University of Political Science and Law, Tumushuke 843900, China; 2025078@xjzfu.edu.cn 
700 1 |a Yang, Hong  |u School of Mathematical Sciences, Gansu Minzu Normal University, Gannan 747000, China; 0200029@gnun.edu.cn 
773 0 |t Axioms  |g vol. 14, no. 11 (2025), p. 805-827 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275501668/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275501668/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275501668/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch