Legacy Code, Live Risk: Empirical Evidence of Malware Detection Gaps

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 22 (2025), p. 11862-11880
Autor principal: Gang-Cheng, Huang
Otros Autores: Tai-Hung, Lai
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275502786
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app152211862  |2 doi 
035 |a 3275502786 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Gang-Cheng, Huang  |u Department of Computer Science and Information Engineering, China University of Technology, Taipei 116, Taiwan; jacky5112@cute.edu.tw 
245 1 |a Legacy Code, Live Risk: Empirical Evidence of Malware Detection Gaps 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Consistent detection of malicious loaders across varied programming languages and build tools remains a significant cybersecurity challenge. This study empirically measures how compiler and language choices affect the detectability of standard in-memory Windows loaders. We implement functionally equivalent loaders (allocate, copy, protect, execute) in C, C#, Fortran, and COBOL, embedding an identical x64 test payload to isolate behavior. Our results reveal significant detection gaps: loaders compiled in legacy languages (Fortran, COBOL) consistently evade static and dynamic antivirus engines that easily flag their C and C# counterparts. We demonstrate this evasion is not due to behavioral differences, but to compiler-specific static artifacts. These artifacts, such as interleaved zero-bytes in Fortran and fragmented payload-construction logic in COBOL, effectively break common signature matching. These findings indicate that many detection tools are overly sensitive to the static build surface rather than true semantic behavior. We provide actionable guidance favoring behavior-focused analysis, such as tracking API call order and memory protection changes, to address this critical legacy code blind spot. 
653 |a Cybersecurity 
653 |a Operating systems 
653 |a Machine learning 
653 |a Behavior 
653 |a Programming languages 
653 |a Malware 
653 |a Reverse engineering 
653 |a Python 
653 |a C plus plus 
653 |a Trends 
653 |a Semantics 
653 |a Polymorphism 
700 1 |a Tai-Hung, Lai  |u Department of Computer Science and Information Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335009, Taiwan 
773 0 |t Applied Sciences  |g vol. 15, no. 22 (2025), p. 11862-11880 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275502786/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275502786/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275502786/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch