LSTM-Based Neural Network Controllers as Drop-In Replacements for PI Controllers in a Wastewater Treatment Plant

Guardat en:
Dades bibliogràfiques
Publicat a:Applied Sciences vol. 15, no. 22 (2025), p. 12046-12065
Autor principal: Muhammad, Adil
Altres autors: Vilanova Ramon
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3275502815
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app152212046  |2 doi 
035 |a 3275502815 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Muhammad, Adil 
245 1 |a LSTM-Based Neural Network Controllers as Drop-In Replacements for PI Controllers in a Wastewater Treatment Plant 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Wastewater Treatment Plants (WWTPs) rely on automatic control strategies to regulate pollutant concentrations and comply with environmental standards. Among them, Proportional Integral (PI) controllers are widely adopted for their simplicity and robustness, yet their effectiveness is limited by the nonlinear and time-varying dynamics of biological processes. In this work, Long Short-Term Memory (LSTM)-based Artificial Neural Network (ANN) PI controllers are proposed as data-driven replacements for conventional PIs in key WWTP feedback loops. Using the Benchmark Simulation Model No. 1 (BSM1), ANN controllers were trained to replicate the behavior of default nitrate and nitrite nitrogen (<inline-formula>SNO,2</inline-formula>) and dissolved oxygen (<inline-formula>SO,5</inline-formula>) loops, under both time-agnostic and time-aware strategies with three- and four-input configurations. The four-input time-aware model delivered the best results, reproducing PI behavior with high accuracy (coefficient of determination, <inline-formula>R2≈0.99</inline-formula>) and considerably reducing control errors. For instance, under storm influent conditions, the <inline-formula>SO,5</inline-formula> controller reduced the Integral of Squared Error (<inline-formula>ISE</inline-formula>) and Integral of Absolute Error (<inline-formula>IAE</inline-formula>) by 84.7% and 68.4%, respectively, compared with the default PI. Beyond loop-level improvements, a Transfer Learning (TL) extension was explored: the trained <inline-formula>SO,5</inline-formula> controller was directly applied to additional aerated reactors (<inline-formula>SO,3</inline-formula> and <inline-formula>SO,4</inline-formula>) without retraining, replacing fixed aeration and demonstrating adaptability while reducing design effort. Plant-wide evaluation with the <inline-formula>SNO,2</inline-formula> loop and three dissolved oxygen loops (<inline-formula>SO,3</inline-formula>–<inline-formula>SO,5</inline-formula>), all controlled by LSTM-based PI controllers, under storm influent conditions, showed further reductions in the Effluent Quality Index (<inline-formula>EQI</inline-formula>) and the Overall Cost Index (<inline-formula>OCI</inline-formula>) by 0.84% and 1.47%, respectively, highlighting simultaneous gains in effluent quality and operational economy. Additionally, the actuator and energy analyses showed that the LSTM-based controllers produced realistic and smooth control signals, maintained consistent energy use, and ensured stable overall operation, confirming the practical feasibility of the proposed approach. 
653 |a Nitrates 
653 |a Reactors 
653 |a Simulation 
653 |a Design 
653 |a Denitrification 
653 |a Wastewater treatment 
653 |a Robust control 
653 |a Sludge 
653 |a Effluents 
653 |a Chemical oxygen demand 
653 |a Neural networks 
653 |a Process controls 
700 1 |a Vilanova Ramon 
773 0 |t Applied Sciences  |g vol. 15, no. 22 (2025), p. 12046-12065 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275502815/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275502815/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275502815/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch