Machine Learning Prediction on Progressive Collapse Resistance of Purely Welded Steel Frames Considering Weld Defects

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Buildings vol. 15, no. 22 (2025), p. 4174-4209
Tác giả chính: Guo Zikang
Tác giả khác: Yu, Peng, Huang Xinheng, Yao Yingkang, Zhang, Chunwei
Được phát hành:
MDPI AG
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3275507947
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15224174  |2 doi 
035 |a 3275507947 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Guo Zikang  |u State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; dipinory@tju.edu.cn (Z.G.); 
245 1 |a Machine Learning Prediction on Progressive Collapse Resistance of Purely Welded Steel Frames Considering Weld Defects 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study proposes a machine learning (ML) framework to predict the progressive collapse resistance of purely welded steel frames considering weld defects. A finite element model (FEM) incorporating weld weakening degree at joints was developed and validated against push-down tests. A parametric modelling program, combined with Latin Hypercube Sampling (LHS), was used to generate 700 samples from 27 design features across 8 categories, establishing a progressive collapse database containing full-process resistance curves. Five ML algorithms—DNN, SVR, RF, XGBoost, and LightGBM—were trained and evaluated. SVR was identified as the optimal model through Bayesian hyperparameter optimization and K-fold cross-validation, achieving an R2 = 0.988 and sMAPE = 5.096% in predicting the full-process resistance response. SHAP analysis was employed to examine feature interpretations both locally and globally, revealing that the failure scenario, beam span-to-height ratio, and weld quality are the three most significant factors affecting structural resistance, accounting for 22.6%, 22.5%, and 16% of the overall influence, respectively. For practical design, a steel frame with a beam span-to-height ratio of approximately 15, a weld joint relative position ratio between 0.15 and 0.18, a circular stub diameter-to-beam width ratio around 1.8, and a stub diameter-to-thickness ratio near 13 can achieve superior progressive collapse robustness, provided that weld quality is ensured. 
653 |a Load 
653 |a Finite element method 
653 |a Height 
653 |a Diameters 
653 |a Thickness ratio 
653 |a Machine learning 
653 |a Hypercubes 
653 |a Influence 
653 |a Learning algorithms 
653 |a Strain gauges 
653 |a Welding 
653 |a Bayesian analysis 
653 |a Artificial intelligence 
653 |a Frames (data processing) 
653 |a Collapse 
653 |a Steel 
653 |a Weld defects 
653 |a Ductility 
653 |a Optimization 
653 |a Yield stress 
653 |a Steel frames 
653 |a Welded joints 
653 |a Mathematical models 
653 |a Catastrophic collapse 
653 |a Latin hypercube sampling 
700 1 |a Yu, Peng  |u State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; dipinory@tju.edu.cn (Z.G.); 
700 1 |a Huang Xinheng  |u School of Civil Engineering, Tianjin University, Tianjin 300350, China 
700 1 |a Yao Yingkang  |u State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; dipinory@tju.edu.cn (Z.G.); 
700 1 |a Zhang, Chunwei  |u State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; dipinory@tju.edu.cn (Z.G.); 
773 0 |t Buildings  |g vol. 15, no. 22 (2025), p. 4174-4209 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275507947/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275507947/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275507947/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch