Slurry Aluminizing of Nickel Electroless Coated Nickel-Based Superalloy

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Coatings vol. 15, no. 11 (2025), p. 1337-1351
מחבר ראשי: Kepa, Thomas
מחברים אחרים: Bonnet Gilles, Pedrizzetti Giulia, Genova Virgilio, Pulci Giovanni, Bartuli Cecilia, Pedraza, Fernando
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3275508871
003 UK-CbPIL
022 |a 2079-6412 
024 7 |a 10.3390/coatings15111337  |2 doi 
035 |a 3275508871 
045 2 |b d20251101  |b d20251130 
084 |a 231445  |2 nlm 
100 1 |a Kepa, Thomas  |u Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE)—UMR CNRS 7356, La Rochelle University, Avenue Michel Crépeau, Cedex 1, 17042 La Rochelle, France 
245 1 |a Slurry Aluminizing of Nickel Electroless Coated Nickel-Based Superalloy 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Nickel-based superalloys require protective low-activity aluminide coatings to withstand high-temperature oxidation and corrosion in turbine applications. As opposed to conventional gas processes, this study investigates the mechanisms of formation of alternative low-activity nickel aluminide coatings on the René N5 superalloy through electroless nickel pre-deposition followed by slurry aluminizing. Different thicknesses of electroless nickel layers (5, 10, 25 μm) were deposited and subsequently aluminized with varying slurry amounts (5–16 mg/cm2) under controlled heat treatments at 700–1080 °C with heating rates of 5 and 20 °C/min. Without electroless pre-deposition, high-activity coatings with refractory element precipitates formed. With electroless nickel, a precipitate-free low-activity coating developed, with thickness increasing linearly from 15 to 40 μm proportional to the initial electroless layer. An increasing slurry amount raised the overall coating thickness from 27 to 67 μm. Kirkendall porosity formed exclusively during the δ-Ni2Al3 to β-NiAl phase transformation at elevated temperature. Reducing the heating rate from 20 to 5 °C/min significantly decreased void formation by promoting more balanced Ni-Al interdiffusion. This work demonstrates that combining electroless nickel with slurry aluminizing provides an efficient route for producing low-activity coatings with controlled microstructure and minimal porosity. 
651 4 |a United States--US 
651 4 |a France 
653 |a Turbines 
653 |a Coatings 
653 |a Oxidation 
653 |a Deposition 
653 |a Interdiffusion 
653 |a Aluminizing 
653 |a Nickel compounds 
653 |a Heat treatment 
653 |a Precipitates 
653 |a Phase transitions 
653 |a Aluminum 
653 |a Plating 
653 |a Heating rate 
653 |a Nickel 
653 |a Slurries 
653 |a Nickel base alloys 
653 |a Nickel aluminides 
653 |a High temperature 
653 |a Superalloys 
653 |a Thickness 
653 |a Annealing 
653 |a Porosity 
700 1 |a Bonnet Gilles  |u Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE)—UMR CNRS 7356, La Rochelle University, Avenue Michel Crépeau, Cedex 1, 17042 La Rochelle, France 
700 1 |a Pedrizzetti Giulia  |u INSTM Reference Laboratory for Engineering of Surface Treatments, Department of Chemical Engineering, Materials, Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italygiovanni.pulci@uniroma1.it (G.P.); cecilia.bartuli@uniroma1.it (C.B.) 
700 1 |a Genova Virgilio  |u INSTM Reference Laboratory for Engineering of Surface Treatments, Department of Chemical Engineering, Materials, Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italygiovanni.pulci@uniroma1.it (G.P.); cecilia.bartuli@uniroma1.it (C.B.) 
700 1 |a Pulci Giovanni  |u INSTM Reference Laboratory for Engineering of Surface Treatments, Department of Chemical Engineering, Materials, Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italygiovanni.pulci@uniroma1.it (G.P.); cecilia.bartuli@uniroma1.it (C.B.) 
700 1 |a Bartuli Cecilia  |u INSTM Reference Laboratory for Engineering of Surface Treatments, Department of Chemical Engineering, Materials, Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italygiovanni.pulci@uniroma1.it (G.P.); cecilia.bartuli@uniroma1.it (C.B.) 
700 1 |a Pedraza, Fernando  |u Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE)—UMR CNRS 7356, La Rochelle University, Avenue Michel Crépeau, Cedex 1, 17042 La Rochelle, France 
773 0 |t Coatings  |g vol. 15, no. 11 (2025), p. 1337-1351 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275508871/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275508871/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275508871/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch