Beskrivelse
Resumen:Descriptive geometry plays a fundamental role in developing spatial reasoning and geometric problem-solving skills in engineering education. This study investigates the comparative effectiveness of two instructional methodologies—Monge’s traditional projection system and the CADOP method, which integrates computer-aided design tools with orthographic projection principles. A quasi-experimental design was implemented with 90 undergraduate engineering students randomly assigned to two groups. Both groups followed the same instructional sequence and were evaluated using baseline surveys, rubric-based performance assessments, and post-training reflections. Quantitative analysis included mean comparisons, t-tests, and effect sizes, while inter-rater reliability confirmed scoring consistency. The results showed that CADOP students significantly outperformed those taught with Monge’s method across all criteria—conceptual under-standing, graphical accuracy, procedural consistency, and spatial reasoning—with very large effect sizes. Qualitative data indicated that CADOP enhanced clarity, efficiency, and confidence, while Monge promoted conceptual rigor but higher cognitive effort. The findings confirm that CADOP effectively reduces procedural complexity and cognitive load, supporting deeper spatial comprehension. Integrating CADOP with selected manual practices offers a balanced pedagogical approach for modernizing descriptive geometry instruction in engineering education.
ISSN:2227-7102
2076-3344
DOI:10.3390/educsci15111492
Fuente:Education Database