A Monte Carlo-Based Framework for Two-Stage Stochastic Programming: Application to Bond Portfolio Optimization

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy vol. 27, no. 11 (2025), p. 1118-1145
1. Verfasser: Hissah, Albaqami
Weitere Verfasser: Mrad Mehdi, Gharbi Anis, Subasi Munevver Mine
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!
Beschreibung
Abstract:This paper presents a Monte Carlo simulation-based approach for solving stochastic two-stage bond portfolio optimization problems. The main objective is to optimize the cost of the bond portfolio while making decisions on bond purchases, holdings, and sales under random market conditions such as interest rate fluctuations and liabilities. The proposed algorithm identifies the number of randomly generated scenarios required to convert the stochastic problem into a deterministic one, subsequently solving it as a Mixed-Integer Linear Program. The practical relevance of this research is shown through an application of the proposed method to a real-world bond market. The results indicate that the proposed approach successfully minimizes costs and meets liabilities, providing a robust solution for bond portfolio optimization.
ISSN:1099-4300
DOI:10.3390/e27111118
Quelle:Engineering Database