A Monte Carlo-Based Framework for Two-Stage Stochastic Programming: Application to Bond Portfolio Optimization

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy vol. 27, no. 11 (2025), p. 1118-1145
Hlavní autor: Hissah, Albaqami
Další autoři: Mrad Mehdi, Gharbi Anis, Subasi Munevver Mine
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:This paper presents a Monte Carlo simulation-based approach for solving stochastic two-stage bond portfolio optimization problems. The main objective is to optimize the cost of the bond portfolio while making decisions on bond purchases, holdings, and sales under random market conditions such as interest rate fluctuations and liabilities. The proposed algorithm identifies the number of randomly generated scenarios required to convert the stochastic problem into a deterministic one, subsequently solving it as a Mixed-Integer Linear Program. The practical relevance of this research is shown through an application of the proposed method to a real-world bond market. The results indicate that the proposed approach successfully minimizes costs and meets liabilities, providing a robust solution for bond portfolio optimization.
ISSN:1099-4300
DOI:10.3390/e27111118
Zdroj:Engineering Database