ABMS-Driven Reinforcement Learning for Dynamic Resource Allocation in Mass Casualty Incidents †

Guardado en:
Bibliografiske detaljer
Udgivet i:Future Internet vol. 17, no. 11 (2025), p. 502-516
Hovedforfatter: Ionuț, Murarețu
Andre forfattere: Vultureanu-Albiși Alexandra, Ilie Sorin, Costin, Bădică
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3275515647
003 UK-CbPIL
022 |a 1999-5903 
024 7 |a 10.3390/fi17110502  |2 doi 
035 |a 3275515647 
045 2 |b d20250101  |b d20251231 
084 |a 231464  |2 nlm 
100 1 |a Ionuț, Murarețu 
245 1 |a ABMS-Driven Reinforcement Learning for Dynamic Resource Allocation in Mass Casualty Incidents † 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper introduces a novel framework that integrates reinforcement learning with declarative modeling and mathematical optimization for dynamic resource allocation during mass casualty incidents. Our approach leverages Mesa as an agent-based modeling library to develop a flexible and scalable simulation environment as a decision support system for emergency response. This paper addresses the challenge of efficiently allocating casualties to hospitals by combining mixed-integer linear and constraint programming while enabling a central decision-making component to adapt allocation strategies based on experience. The two-layer architecture ensures that casualty-to-hospital assignments satisfy geographical and medical constraints while optimizing resource usage. The reinforcement learning component receives feedback through agent-based simulation outcomes, using survival rates as the reward signal to guide future allocation decisions. Our experimental evaluation, using simulated emergency scenarios, shows a significant improvement in survival rates compared to traditional optimization approaches. The results indicate that the hybrid approach successfully combines the robustness of declarative modeling and the adaptability required for smart decision making in complex and dynamic emergency scenarios. 
651 4 |a Romania 
653 |a Emergency medical care 
653 |a Machine learning 
653 |a Simulation 
653 |a Decision support systems 
653 |a Artificial intelligence 
653 |a Adaptability 
653 |a Assignment problem 
653 |a Hospitals 
653 |a Optimization techniques 
653 |a Evacuations & rescues 
653 |a Decision making 
653 |a Survival 
653 |a Optimization 
653 |a Resource allocation 
653 |a Emergency response 
653 |a Linear programming 
653 |a Mixed integer 
653 |a Mass casualty incidents 
653 |a Constraints 
653 |a Agent-based models 
700 1 |a Vultureanu-Albiși Alexandra 
700 1 |a Ilie Sorin 
700 1 |a Costin, Bădică 
773 0 |t Future Internet  |g vol. 17, no. 11 (2025), p. 502-516 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275515647/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275515647/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275515647/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch