Semantic Data Federated Query Optimization Based on Decomposition of Block-Level Subqueries

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Future Internet vol. 17, no. 11 (2025), p. 531-552
Κύριος συγγραφέας: Yao, Yuan
Άλλοι συγγραφείς: Zhang, Yang
Έκδοση:
MDPI AG
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
Περιγραφή
Περίληψη:The digital age and the rise of Internet of Things technology have led to an explosion of data, including vast amounts of semantic data. In the context of large-scale semantic data graphs, centralized storage struggles to meet the efficiency requirements of the queries. This has led to a shift towards distributed semantic data systems. In federated semantic data systems, ensuring both query efficiency and comprehensive results is challenging because of data independence and privacy constraints. To address this, we propose a query processing framework featuring a block-level star decomposition method for generating efficient query plans, augmented by auxiliary indexes to guarantee the completeness of the results. A specialized FEDERATEDAND BY keyword is introduced for federated environments, and a partition-based parallel assembly method accelerates the result integration. Our approach demonstrably improves query efficiency and is analyzed for its potential application in energy systems.
ISSN:1999-5903
DOI:10.3390/fi17110531
Πηγή:ABI/INFORM Global