Robust and Fast Sensing of Urban Flood Depth with Social Media Images Using Pre-Trained Large Models and Simple Edge Training

Guardado en:
Bibliografiske detaljer
Udgivet i:Hydrology vol. 12, no. 11 (2025), p. 307-328
Hovedforfatter: Lin, Lin
Andre forfattere: Zeng Zhenli, Tang Chaoqing, Xie Yilin, Liang Qiuhua
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3275518944
003 UK-CbPIL
022 |a 2306-5338 
024 7 |a 10.3390/hydrology12110307  |2 doi 
035 |a 3275518944 
045 2 |b d20250101  |b d20251231 
100 1 |a Lin, Lin  |u School of Water Conservancy and Transportation, Zhengzhou University, No. 100 Science Rd, Zhengzhou 450001, China; linlin577@zzu.edu.cn 
245 1 |a Robust and Fast Sensing of Urban Flood Depth with Social Media Images Using Pre-Trained Large Models and Simple Edge Training 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurately estimating urban floodwater depth is a critical step in enhancing urban resilience and strengthening disaster prevention and mitigation capabilities. Traditional methods relying on hydrological monitoring stations and numerical simulations suffer from limitations such as sparse spatial coverage, insufficient validation data, limited accuracy, and delayed fast performance. In contrast, social media data—characterized by its vast volume and fast availability, can effectively compensate for these shortcomings. When processed using artificial intelligence (AI) algorithms, such data can significantly improve credibility, disaster perception speed, and water depth estimation accuracy. To address these challenges, this paper proposes a robust and widely applicable method for rapid urban flood depth perception. The approach integrates AI technology and social media data to construct an AI framework capable of perceiving urban physical parameters through multimodal big data fusion without costly model training. By leveraging the near real-time and widespread nature of social media, an automated web crawler collects flood images and their textual descriptions (including reference objects), eliminating the need for additional hardware investments. The framework uses predefined prompts and pre-trained models to automatically perform relevance verification, duplicate filtering, object detection, and feature extraction, requiring no manual data annotation or model training. With only a minimal amount of water depth annotated data and compressed cross-modal feature vectors as training input, a lightweight Multilayer Perceptron (MLP) achieves high-precision depth estimation based on reference objects. This method avoids the need for large-scale model fine-tuning, allowing rapid training even on devices without GPUs. Experiments demonstrate that the proposed method reduces the Mean Square Error (MSE) by over 80%, processes each image in less than 0.5 s (more than 20 times faster than existing large-model approaches), and exhibits strong robustness to changes in perspective and image quality. The solution is fully compatible with existing infrastructure such as surveillance cameras, offering an efficient and reliable approach for fast flood monitoring in urban hydrology and water engineering applications. 
653 |a Feature extraction 
653 |a Environmental monitoring 
653 |a Multilayer perceptrons 
653 |a Water depth 
653 |a Urban hydrology 
653 |a Data integration 
653 |a Moisture content 
653 |a Annotations 
653 |a Space perception 
653 |a Disasters 
653 |a Emergency preparedness 
653 |a Contrast media 
653 |a Training 
653 |a Accuracy 
653 |a Hydrology 
653 |a Artificial intelligence 
653 |a Vectors 
653 |a Robustness (mathematics) 
653 |a Real time 
653 |a Scale models 
653 |a Water content 
653 |a Water engineering 
653 |a Big Data 
653 |a Social networks 
653 |a Floods 
653 |a Floodwater 
653 |a Social media 
653 |a Depth perception 
653 |a Monitoring 
653 |a Urban areas 
653 |a Sensors 
653 |a Neural networks 
653 |a Physical properties 
653 |a Social resilience 
653 |a Image quality 
653 |a Object recognition 
653 |a Estimation 
653 |a Digital media 
700 1 |a Zeng Zhenli  |u School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, No. 1037 Luoyu Rd, Wuhan 430074, China; m202573784@hust.edu.cn (Z.Z.); m202573965@hust.edu.cn (Y.X.) 
700 1 |a Tang Chaoqing  |u School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, No. 1037 Luoyu Rd, Wuhan 430074, China; m202573784@hust.edu.cn (Z.Z.); m202573965@hust.edu.cn (Y.X.) 
700 1 |a Xie Yilin  |u School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, No. 1037 Luoyu Rd, Wuhan 430074, China; m202573784@hust.edu.cn (Z.Z.); m202573965@hust.edu.cn (Y.X.) 
700 1 |a Liang Qiuhua  |u School of Water Conservancy and Transportation, Zhengzhou University, No. 100 Science Rd, Zhengzhou 450001, China; linlin577@zzu.edu.cn 
773 0 |t Hydrology  |g vol. 12, no. 11 (2025), p. 307-328 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275518944/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275518944/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275518944/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch