The Structural Similarity Can Identify the Presence of Noise in Video Data from Unmanned Vehicles

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Imaging vol. 11, no. 11 (2025), p. 375-398
Autor principal: Anzor, Orazaev
Otros Autores: Lyakhov Pavel, Andreev Valery, Butusov Denis
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275536119
003 UK-CbPIL
022 |a 2313-433X 
024 7 |a 10.3390/jimaging11110375  |2 doi 
035 |a 3275536119 
045 2 |b d20250101  |b d20251231 
100 1 |a Anzor, Orazaev  |u Department of Mathematical Modeling, North-Caucasus Federal University, Stavropol 355017, Russia 
245 1 |a The Structural Similarity Can Identify the Presence of Noise in Video Data from Unmanned Vehicles 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper proposes a method for detecting distorted frames in video footage recorded by an unmanned vehicle. The proposed detection method is performed by analyzing a sequence of video frames, utilizing the contrast aspect of the structural similarity index between previous and current frames. This approach allows for the detection of distortions in the video caused by various types of noise. The scientific novelty lies in the targeted adaptation of the SSIM component to the task of real interframe analysis in conditions of shooting from an unmanned vehicle, in the absence of a reference. The three videos were considered during the simulation. They were distorted by random significant impulse noise, Gaussian noise, and mixed noise. Every 100th frame of the experimental video was subjected to distortion with increasing density. An additional measure was introduced to provide a more accurate assessment of distortion detection quality. This measure is based on the average absolute difference in similarity between video frames. The developed approach allows for effective identification of distortions and is of significant importance for monitoring systems and video data analysis, particularly in footage obtained from unmanned vehicles, where video quality is critical for subsequent processing and analysis. 
653 |a Data analysis 
653 |a Similarity 
653 |a Accuracy 
653 |a Frames (data processing) 
653 |a Lighting 
653 |a Neural networks 
653 |a Distortion 
653 |a Unmanned aerial vehicles 
653 |a Random noise 
653 |a Video data 
653 |a Unmanned vehicles 
653 |a Methods 
653 |a Drones 
653 |a Algorithms 
700 1 |a Lyakhov Pavel  |u North-Caucasus Center for Mathematical Research, North-Caucasus Federal University, Stavropol 355017, Russia; ljahov@mail.ru 
700 1 |a Andreev Valery  |u Computer-Aided Design Department, St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova St., Saint Petersburg 197022, Russia; vsandreev@etu.ru 
700 1 |a Butusov Denis  |u Computer-Aided Design Department, St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova St., Saint Petersburg 197022, Russia; vsandreev@etu.ru 
773 0 |t Journal of Imaging  |g vol. 11, no. 11 (2025), p. 375-398 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275536119/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275536119/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275536119/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch