Performance Improvement of a Multiple Linear Regression-Based Storm Surge Height Prediction Model Using Data Resampling Techniques

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Journal of Marine Science and Engineering vol. 13, no. 11 (2025), p. 2173-2196
Hoofdauteur: Jung-A, Yang
Andere auteurs: Lee, Yonggwan
Gepubliceerd in:
MDPI AG
Onderwerpen:
Online toegang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3275540324
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13112173  |2 doi 
035 |a 3275540324 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Jung-A, Yang  |u Division of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; ja0903@konkuk.ac.kr 
245 1 |a Performance Improvement of a Multiple Linear Regression-Based Storm Surge Height Prediction Model Using Data Resampling Techniques 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Storm surges present a major hazard to coastal areas worldwide, a risk that is further amplified by ongoing sea-level rise associated with climate warming. The purpose of this study is to enhance the prediction performance of a storm surge height model by incorporating data resampling techniques into a multiple linear regression framework. Typhoon-related predictors, such as location and intensity-related parameters, were used to estimate observed storm surge heights at eleven tide gauge stations in southeastern Korea. To address the data imbalance inherent in storm surge height distributions, we applied combinations of over- and under-sampling methods across various threshold levels and evaluated them using four statistical metrics: root mean square error (RMSE), mean absolute error (MAE), mean squared error (MSE), and the coefficient of determination (R2). The results demonstrate that both threshold selection and sampling configuration significantly influence model accuracy. In particular, station-specific sampling strategies improved R2 values by up to 0.46, even without modifying the regression model itself, underscoring the effectiveness of data-level balancing. These findings highlight that adaptive resampling strategies—tailored to local surge characteristics and data distribution—can serve as a powerful tool for improving regression-based coastal hazard prediction models. 
651 4 |a Korean Peninsula 
653 |a Tidal waves 
653 |a Accuracy 
653 |a Coastal zone 
653 |a Typhoons 
653 |a Global warming 
653 |a Deep learning 
653 |a Storm surges 
653 |a Regression analysis 
653 |a Sampling techniques 
653 |a Resampling 
653 |a Regression models 
653 |a Hurricanes 
653 |a Sea level 
653 |a Climate change 
653 |a Sampling 
653 |a Sea level changes 
653 |a Coastal hazards 
653 |a Statistical analysis 
653 |a Prediction models 
653 |a Coasts 
653 |a Storms 
653 |a Tide gauges 
653 |a Sampling methods 
653 |a Root-mean-square errors 
653 |a Regions 
653 |a Variables 
653 |a Height 
653 |a Environmental 
700 1 |a Lee, Yonggwan  |u Asia Infrastructure Research Center, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 11 (2025), p. 2173-2196 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275540324/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275540324/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275540324/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch