MARC

LEADER 00000nab a2200000uu 4500
001 3275540653
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13112161  |2 doi 
035 |a 3275540653 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Kim, Minjoon  |u Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea; teletobi96@pusan.ac.kr (M.K.); june3373@pusan.ac.kr (I.-j.B.) 
245 1 |a Deep Neural Network-Based Prediction of Flow-Induced Noise Around Cylindrical Bodies 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Cylindrical bodies generate flow-induced noise when exposed to external flows, which can be predicted numerically using Computational Fluid Dynamics (CFD) combined with the Ffowcs Williams–Hawkings (FW–H) Equation. Accurate prediction, however, requires turbulence models such as Detached Eddy Simulation (DES) with fine spatial resolution and small time steps, in addition to time-dependent surface pressure data and receiver arrangements. These requirements greatly increase computational costs and limit the applicability of such methods during the design stage. To address this challenge, a Deep Neural Network (DNN) model was developed to predict flow-induced noise around a cylinder. Training data were generated from CFD cases using cylinder geometry and inflow velocity as design variables, with multiple receivers arranged in a polar coordinate system. Acoustic signals were computed using Farassat’s Formulation 1A, the time-domain surface solution of the FW–H Equation. The DNN was trained with design variables, receiver coordinates, and octave-band center frequencies as inputs, while the Sound Pressure Level (SPL) served as the output. Model performance was evaluated using the adjusted coefficient of determination (<inline-formula>Radj2</inline-formula>) and the root mean squared error (RMSE). In addition, interpolation capability was tested by varying receiver spacing to examine robustness under sparse data conditions. The results confirm that the proposed framework provides accurate and computationally efficient predictions suitable for early-stage design. 
653 |a Hydrodynamics 
653 |a Datasets 
653 |a Fluid dynamics 
653 |a Artificial neural networks 
653 |a Sound pressure 
653 |a Signal processing 
653 |a Polar coordinates 
653 |a Fluid flow 
653 |a Pressure 
653 |a Pressure distribution 
653 |a Computer applications 
653 |a Design 
653 |a Cylindrical structures 
653 |a Turbulence models 
653 |a Simulation 
653 |a Fourier transforms 
653 |a Coordinate systems 
653 |a Root-mean-square errors 
653 |a Cylindrical bodies 
653 |a Computational efficiency 
653 |a Geometry 
653 |a Noise 
653 |a Detached eddy simulation 
653 |a Time dependence 
653 |a Turbulence 
653 |a Accuracy 
653 |a Flow velocity 
653 |a Noise prediction 
653 |a Spatial discrimination 
653 |a Pressure dependence 
653 |a Cylinders 
653 |a Inflow 
653 |a Predictions 
653 |a Spatial resolution 
653 |a Neural networks 
653 |a Variables 
653 |a Computing costs 
653 |a Noise generation 
653 |a Computational fluid dynamics 
653 |a Acoustics 
653 |a Environmental 
700 1 |a Im-jun, Ban  |u Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea; teletobi96@pusan.ac.kr (M.K.); june3373@pusan.ac.kr (I.-j.B.) 
700 1 |a Sung-chul, Shin  |u Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea; teletobi96@pusan.ac.kr (M.K.); june3373@pusan.ac.kr (I.-j.B.) 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 11 (2025), p. 2161-2175 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275540653/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275540653/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275540653/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch