Multi-Port Liner Ship Routing and Scheduling Optimization Using Machine Learning Forecast and Branch-And-Price Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Marine Science and Engineering vol. 13, no. 11 (2025), p. 2163-2193
Autor principal: Cao Zhichao
Otros Autores: Qian Tao, Zhang Silin, Song, Haibo, Tian Yaxin
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275540655
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13112163  |2 doi 
035 |a 3275540655 
045 2 |b d20251101  |b d20251130 
084 |a 231479  |2 nlm 
100 1 |a Cao Zhichao  |u School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China; caozhichao@bjtu.edu.cn (Z.C.); 2333320021@stmail.ntu.edu.cn (T.Q.); 2433110163@stmail.ntu.edu.cn (Y.T.) 
245 1 |a Multi-Port Liner Ship Routing and Scheduling Optimization Using Machine Learning Forecast and Branch-And-Price Algorithm 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study focuses on an integrated three-level multi-port liner ship vessel routing and scheduling optimization problem. Specifically, the three-level multi-port network consists of hub ports, feeder ports, and cargo source points, which provide the demands’ loading/unloading at each port. Considering vessel-specific constraints such as speed, capacity, and cost, we formulate the multi-port liner ship routing and scheduling optimization problem as a mixed integer linear programming model with the objective of minimizing total voyage cost and operating time. First, we employ machine learning models to forecast the short-term demand at different ports as the input. There are multiple feasible routes generated and allowed to be elected. Second, to ensure both computational efficiency and solution quality, we devise and compare genetic algorithm (GA), simulated annealing (SA), Gurobi and the branch-and-price (B&P) algorithm to optimize scheduling plans. Experimental results demonstrate that the proposed predict-then-optimization framework effectively addresses the complexity of multi-port scheduling and routing problems, achieving a reduction in total transportation cost by 0.81% to 8.08% and a decrease in computation time by 16.86% to 24.7% compared to baseline methods, particularly with the SA + B&P hybrid approach. This leads to overall efficiency and cost-saving ocean vessel operations. 
653 |a Sea vessels 
653 |a Linear programming 
653 |a Integer programming 
653 |a Accuracy 
653 |a Ports 
653 |a Deep learning 
653 |a Collaboration 
653 |a Adaptability 
653 |a Forecasting 
653 |a Algorithms 
653 |a Wind farms 
653 |a Traffic flow 
653 |a Machine learning 
653 |a Operating costs 
653 |a Energy consumption 
653 |a Learning algorithms 
653 |a Efficiency 
653 |a Scheduling 
653 |a Genetic algorithms 
653 |a Artificial intelligence 
653 |a Network management systems 
653 |a Costs 
653 |a Optimization 
653 |a Mixed integer 
653 |a Simulated annealing 
653 |a Optimization algorithms 
653 |a Economic 
700 1 |a Qian Tao  |u School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China; caozhichao@bjtu.edu.cn (Z.C.); 2333320021@stmail.ntu.edu.cn (T.Q.); 2433110163@stmail.ntu.edu.cn (Y.T.) 
700 1 |a Zhang Silin  |u School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China; caozhichao@bjtu.edu.cn (Z.C.); 2333320021@stmail.ntu.edu.cn (T.Q.); 2433110163@stmail.ntu.edu.cn (Y.T.) 
700 1 |a Song, Haibo  |u CRRC Intelligent Transportation Engineering Technology Co., Ltd., Beijing 610041, China; songhaibo@crrcitet.com 
700 1 |a Tian Yaxin  |u School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China; caozhichao@bjtu.edu.cn (Z.C.); 2333320021@stmail.ntu.edu.cn (T.Q.); 2433110163@stmail.ntu.edu.cn (Y.T.) 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 11 (2025), p. 2163-2193 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275540655/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275540655/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275540655/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch