Interfacial Gap Prediction in Laser Welding of Pure Copper Overlap Joints Using Multiple Sensors

Guardado en:
Detalles Bibliográficos
Publicado en:Materials vol. 18, no. 22 (2025), p. 5189-5205
Autor principal: Kim Hyeonhee
Otros Autores: Kim Cheolhee, Kang, Minjung
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275541482
003 UK-CbPIL
022 |a 1996-1944 
024 7 |a 10.3390/ma18225189  |2 doi 
035 |a 3275541482 
045 2 |b d20250101  |b d20251231 
084 |a 231532  |2 nlm 
100 1 |a Kim Hyeonhee  |u Flexible Manufacturing R&D Department, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea; 2080khh@gmail.com 
245 1 |a Interfacial Gap Prediction in Laser Welding of Pure Copper Overlap Joints Using Multiple Sensors 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In this study, a novel approach was proposed for predicting the interfacial gap in copper overlap joints by using deep learning and multi-sensor fusion. In this method, an image sensor, a spectrometer, and optical sensors tomography (OCT) sensors were used to develop and validate deep learning models under various gap conditions. The results revealed that the variation in melt pool dimensions, changes in keyhole behavior, intensity variations at specific wavelengths, and keyhole depth derived from the OCT data could be used to accurately predict the interfacial gap. Among the proposed models, a binary gap classification model achieved the highest accuracy of 98.8%. The spectrometer was the most effective sensor in this study, whereas the image and OCT sensors provided complementary data. The best performance was achieved by fusing all three sensors, which emphasizes the importance of sensor fusion for precise gap prediction. This study provides valuable insights into improving weld quality assessment and optimizing manufacturing processes. 
651 4 |a United States--US 
653 |a Machine learning 
653 |a Quality assessment 
653 |a Lap joints 
653 |a Cameras 
653 |a Accuracy 
653 |a Lasers 
653 |a Sensors 
653 |a Melting 
653 |a Aluminum 
653 |a Keyholes 
653 |a Copper 
653 |a Photonics 
653 |a Multisensor applications 
653 |a Laser beam welding 
653 |a Deep learning 
653 |a Optical measuring instruments 
653 |a Optics 
653 |a Geometry 
653 |a Multisensor fusion 
653 |a Melt pools 
700 1 |a Kim Cheolhee  |u Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97229, USA 
700 1 |a Kang, Minjung  |u Flexible Manufacturing R&D Department, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea; 2080khh@gmail.com 
773 0 |t Materials  |g vol. 18, no. 22 (2025), p. 5189-5205 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275541482/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275541482/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275541482/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch