Tool Wear Condition Monitoring Based on Improved Symmetrized Dot Pattern Enhanced Resnet18 Under Small Samples

Guardado en:
书目详细资料
发表在:Lubricants vol. 13, no. 11 (2025), p. 503-517
主要作者: Chen, Xiaoqin
其他作者: Wang Gonghai, Fu Yuandie, Zhang, Huan, Chen, Gao
出版:
MDPI AG
主题:
在线阅读:Citation/Abstract
Full Text + Graphics
Full Text - PDF
标签: 添加标签
没有标签, 成为第一个标记此记录!

MARC

LEADER 00000nab a2200000uu 4500
001 3275541642
003 UK-CbPIL
022 |a 2075-4442 
024 7 |a 10.3390/lubricants13110503  |2 doi 
035 |a 3275541642 
045 2 |b d20250101  |b d20251231 
084 |a 231530  |2 nlm 
100 1 |a Chen, Xiaoqin  |u School of Business Management, Jiaxing Nanhu University, Jiaxing 314001, China; annachen230014@jxnhu.edu.cn 
245 1 |a Tool Wear Condition Monitoring Based on Improved Symmetrized Dot Pattern Enhanced Resnet18 Under Small Samples 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Timely and effective identification of the tool wear condition is crucial for ensuring the machining quality of CNC machine tools. In most industrial scenarios, the cost of sample collection is high, so only a small number of samples are available for model training, making it difficult for the existing tool wear condition monitoring (TCM) methods based on deep learning to achieve high performance. To address this problem, this paper proposes a TCM method based on the improved symmetric dot pattern (SDP) enhanced ResNet18. Firstly, the time series sample data is converted into grayscale matrices through SDP, the correlation coefficient between the grayscale matrices is calculated, and the optimal parameter combination of SDP is determined according to the objective of minimizing the correlation coefficient. Then, the cutting force signal is converted into a lobe diagram of the optimized SDP to enrich the sample feature information. Next, the SDP lobe diagram is input into ResNet18 for few-shot learning. The results of a series of TCM experiments demonstrate that the proposed method is significantly superior to the STFT and GAF based methods. 
653 |a Cutting force 
653 |a Machining 
653 |a Signal processing 
653 |a Symmetrized dot pattern 
653 |a Symmetry 
653 |a Gray scale 
653 |a Machine tools 
653 |a Cutting tools 
653 |a Methods 
653 |a Deep learning 
653 |a Time series 
653 |a Optimization algorithms 
653 |a Correlation coefficients 
653 |a Tool wear 
653 |a Condition monitoring 
700 1 |a Wang Gonghai  |u Jiaxing Key Laboratory of Intelligent Manufacturing and Operation & Maintenance of Automotive Parts, Jiaxing Nanhu University, Jiaxing 314001, China; 22451439008@stu.wzu.edu.cn 
700 1 |a Fu Yuandie  |u Jiaxing Key Laboratory of Intelligent Manufacturing and Operation & Maintenance of Automotive Parts, Jiaxing Nanhu University, Jiaxing 314001, China; 22451439008@stu.wzu.edu.cn 
700 1 |a Zhang, Huan  |u School of Photovoltaic Modern Industry, Jiaxing Nanhu University, Jiaxing 314001, China; ayahuan1018@163.com 
700 1 |a Chen, Gao  |u School of Mechatronics and Transportation, Jiaxing Nanyang Polytechnic Institute, Jiaxing 314003, China 
773 0 |t Lubricants  |g vol. 13, no. 11 (2025), p. 503-517 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275541642/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275541642/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275541642/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch