A Finite Element Study of Bimodulus Materials with 2D Constitutive Relations in Non-Principal Stress Directions

Guardado en:
Detalles Bibliográficos
Publicado en:Materials vol. 18, no. 22 (2025), p. 5126-5158
Autor principal: Chao, Dong
Otros Autores: Wang, Fei, Wang, Tongtong, Long, Zhao, Qian Penghui, Li, Mingfeng, Dai Zhenglong, Zeng Shan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275541757
003 UK-CbPIL
022 |a 1996-1944 
024 7 |a 10.3390/ma18225126  |2 doi 
035 |a 3275541757 
045 2 |b d20250101  |b d20251231 
084 |a 231532  |2 nlm 
100 1 |a Chao, Dong  |u AECC Shenyang Engine Research Institute, Shenyang 110015, China; daweishengli@163.com 
245 1 |a A Finite Element Study of Bimodulus Materials with 2D Constitutive Relations in Non-Principal Stress Directions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper extends the application of bimodulus elasticity theory by formulating a constitutive relation applicable to non-principal stress directions, building upon the established framework based on principal stresses. The paper develops four full-scale finite element models—the 3-node triangular, the 4-node quadrilateral, the 6-node triangular, and the 8-node quadrilateral elements—with the latter two showcasing higher precision in complex stress simulations. This formulation enables a more detailed analysis of material behavior under varying stress states. An effective iterative solution approach is introduced to address the nonlinearity of bimodulus materials, ensuring model convergence and reliability. The accuracy of the model has been verified through rigorous ANSYS 2022 R1 simulations, and the solution results have been compared with those in the existing literature, emphasizing the importance of the tension-to-compression modulus ratio in determining structural displacement and stress distribution. The developed models and methods provide useful numerical tools for the analysis and design of structures incorporating bimodulus materials. 
653 |a Finite element method 
653 |a Simulation 
653 |a Quadrilaterals 
653 |a Constitutive relationships 
653 |a Design engineering 
653 |a Nodes 
653 |a Asphalt pavements 
653 |a Mathematical models 
653 |a Methods 
653 |a Algorithms 
653 |a Deformation 
653 |a Iterative solution 
653 |a Stress distribution 
653 |a Composite materials 
700 1 |a Wang, Fei  |u School of Power and Energy Engineering, Nanchang Hangkong University, Nanchang 330063, China; 70747@nchu.edu.cn 
700 1 |a Wang, Tongtong  |u School of Aeronautics and Astronautics, Nanchang Hangkong University, Nanchang 330063, China 
700 1 |a Long, Zhao  |u School of Aeronautics and Astronautics, Nanchang Hangkong University, Nanchang 330063, China 
700 1 |a Qian Penghui  |u School of Aeronautics and Astronautics, Nanchang Hangkong University, Nanchang 330063, China 
700 1 |a Li, Mingfeng  |u School of Aeronautics and Astronautics, Nanchang Hangkong University, Nanchang 330063, China 
700 1 |a Dai Zhenglong  |u School of Aeronautics and Astronautics, Nanchang Hangkong University, Nanchang 330063, China 
700 1 |a Zeng Shan  |u School of Aeronautics and Astronautics, Nanchang Hangkong University, Nanchang 330063, China 
773 0 |t Materials  |g vol. 18, no. 22 (2025), p. 5126-5158 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275541757/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275541757/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275541757/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch