A New Memory-Processing Unit Model Based on Spiking Neural P Systems with Dendritic and Synaptic Behavior for Kronecker Matrix–Matrix Multiplication

Guardat en:
Dades bibliogràfiques
Publicat a:Mathematics vol. 13, no. 22 (2025), p. 3663-3673
Autor principal: Garcia, Luis
Altres autors: Anides Esteban Ramse, Vazquez, Eduardo, Toscano, Linda Karina, Sanchez, Gabriel, Avalos, Juan Gerardo, Sanchez Giovanny
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3275541976
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13223663  |2 doi 
035 |a 3275541976 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Garcia, Luis 
245 1 |a A New Memory-Processing Unit Model Based on Spiking Neural P Systems with Dendritic and Synaptic Behavior for Kronecker Matrix–Matrix Multiplication 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Currently, Kronecker Matrix–Matrix Multiplication play a crucial role in many advanced applications across science and engineering, such as Quantum Computing (Tensor Representation of Quantum States, Quantum Gate Construction), Machine Learning and Data Science (Kernel Methods, Tensor Decompositions), and Signal and Image Processing (Multi-dimensional Filtering, Compression Algorithms). However, the implementation of the Kronecker Matrix–Matrix Multiplication increasingly relies on systems with enhanced computational capabilities. Specifically, current implementations expend large amounts of external memory and requires a large number of processing units to perform this operation. As is commonly acknowledged, cutting-edge high-performance computing schemes still faces limitations in terms of energy and performance due to the bottleneck in data transfer between processing units and memory. To mitigate this limitation, memory processing units (MPUs) enable direct computation on in-memory data, reducing latency and eliminating the need for data transfer. On the other hand, spiking neural P systems, with their inherent parallelism and distributed processing capabilities, are therefore well-suited as foundational components for implementing such memory architectures efficiently. From the mathematical point of view, we present for the first time a neural, synaptic, and dendritic model to support the Kronecker Matrix–Matrix multiplication. To this end, the proposed spiking neural P system with their cutting-edge variants, such as anti-spikes, communication on request, synaptic weights, and dendritic–axonal delays, facilitates the creation of neural memory cells and spike-based routers. Hence, these elements potentially allow the design of novel processing memory architectures that markedly enhance data transfer efficiency between computational units and memory. 
653 |a Routers 
653 |a Data transfer (computers) 
653 |a Quantum computing 
653 |a Neurons 
653 |a Image compression 
653 |a Computer memory 
653 |a Data science 
653 |a Image filters 
653 |a Spiking 
653 |a Tensors 
653 |a Multiplication & division 
653 |a Dendritic structure 
653 |a Multidimensional methods 
653 |a Machine learning 
653 |a Kernel functions 
653 |a Image processing 
653 |a Distributed processing 
700 1 |a Anides Esteban Ramse 
700 1 |a Vazquez, Eduardo 
700 1 |a Toscano, Linda Karina 
700 1 |a Sanchez, Gabriel 
700 1 |a Avalos, Juan Gerardo 
700 1 |a Sanchez Giovanny 
773 0 |t Mathematics  |g vol. 13, no. 22 (2025), p. 3663-3673 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275541976/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275541976/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275541976/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch