A Hierarchical Fractal Space NSGA-II-Based Cloud–Fog Collaborative Optimization Framework for Latency and Energy-Aware Task Offloading in Smart Manufacturing

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Mathematics vol. 13, no. 22 (2025), p. 3691-3720
Hoofdauteur: Lin, Zhiwen
Andere auteurs: Chen, Chuanhai, Chen, Jianzhou, Liu, Zhifeng
Gepubliceerd in:
MDPI AG
Onderwerpen:
Online toegang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3275541977
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13223691  |2 doi 
035 |a 3275541977 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Lin, Zhiwen  |u Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun 130025, China 
245 1 |a A Hierarchical Fractal Space NSGA-II-Based Cloud–Fog Collaborative Optimization Framework for Latency and Energy-Aware Task Offloading in Smart Manufacturing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The growth of intelligent manufacturing systems has led to a wealth of computation-intensive tasks with complex dependencies. These tasks require an efficient offloading architecture that balances responsiveness and energy efficiency across distributed computing resources. Existing task offloading approaches have fundamental limitations when simultaneously optimizing multiple conflicting objectives while accommodating hierarchical computing architectures and heterogeneous resource capabilities. To address these challenges, this paper presents a cloud–fog hierarchical collaborative computing (CFHCC) framework that features fog cluster mechanisms. These methods enable coordinated, multi-node parallel processing while maintaining data sensitivity constraints. The optimization of task distribution across this three-tier architecture is formulated as a multi-objective problem, minimizing both system latency and energy consumption. To solve this problem, a fractal-based multi-objective optimization algorithm is proposed to efficiently explore Pareto-optimal task allocation strategies by employing recursive space partitioning aligned with the hierarchical computing structure. Simulation experiments across varying task scales demonstrate that the proposed method achieves a 20.28% latency reduction and 3.03% energy savings compared to typical and advanced methods for large-scale task scenarios, while also exhibiting superior solution consistency and convergence. A case study on a digital twin manufacturing system validated its practical effectiveness, with CFHCC outperforming traditional cloud–edge collaborative computing by 12.02% in latency and 11.55% in energy consumption, confirming its suitability for diverse intelligent manufacturing applications. 
653 |a Energy management 
653 |a Parallel processing 
653 |a Collaboration 
653 |a Computer architecture 
653 |a Mathematical models 
653 |a Task complexity 
653 |a Fractals 
653 |a Architecture 
653 |a Multiple objective analysis 
653 |a Manufacturing 
653 |a Energy consumption 
653 |a Intelligent manufacturing systems 
653 |a Distributed processing 
653 |a Business metrics 
653 |a Scheduling 
653 |a Edge computing 
653 |a Genetic algorithms 
653 |a Process controls 
653 |a Digital twins 
653 |a Computation offloading 
653 |a Pareto optimization 
653 |a Design 
653 |a Energy efficiency 
653 |a Optimization algorithms 
700 1 |a Chen, Chuanhai  |u Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun 130025, China 
700 1 |a Chen, Jianzhou  |u Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun 130025, China 
700 1 |a Liu, Zhifeng  |u Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun 130025, China 
773 0 |t Mathematics  |g vol. 13, no. 22 (2025), p. 3691-3720 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275541977/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275541977/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275541977/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch