Reinforcement Learning Enhanced Multi-Objective Social Network Search Algorithm for Engineering Design Problems

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 22 (2025), p. 3613-3641
Autor principal: Peng, Wei
Otros Autores: Li Zihan, Li, Ji, Hu, Guoqing
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275541980
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13223613  |2 doi 
035 |a 3275541980 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Peng, Wei  |u School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China 
245 1 |a Reinforcement Learning Enhanced Multi-Objective Social Network Search Algorithm for Engineering Design Problems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To address real-world engineering design optimization problems, this study proposes a reinforcement learning enhanced multi-objective social network search algorithm (QMOSNS), which represents a novel approach for solving multi-objective optimization problems. QMOSNS utilizes Halton sequences for population initialization to enhance the diversity of the initial population. A multi-objective archive mechanism is implemented to store Pareto-optimal solutions and select parental individuals through a reassigned fitness evaluation strategy. Furthermore, Q-learning is incorporated to adaptively select mutation operators, thereby dynamically balancing the algorithm’s exploration and exploitation capabilities. QMOSNS was rigorously evaluated through 50 prominent case studies, including 22 unconstrained multi-objective benchmark problems, 18 constrained multi-objective benchmark problems, and 10 multi-objective engineering design problems, to comprehensively validate its computational capabilities and effectiveness. Moreover, statistical results obtained using consistent performance metrics were compared with those of other highly regarded algorithms to ensure a fair and objective performance assessment. The comparative results show that QMOSNS is robust and superior in handling a wide variety of multi-objective problems. This study underscores the efficacy of integrating reinforcement learning with social intelligence for tackling complex multi-objective optimization in engineering and computational domains. 
653 |a Performance measurement 
653 |a Performance assessment 
653 |a Social networks 
653 |a Exploitation 
653 |a Design engineering 
653 |a Optimization techniques 
653 |a Mutation 
653 |a Genetic algorithms 
653 |a Decision making 
653 |a Benchmarks 
653 |a Effectiveness 
653 |a Pareto optimization 
653 |a Search algorithms 
653 |a Multiple objective analysis 
653 |a Objectives 
653 |a Research & development--R&D 
653 |a Design optimization 
653 |a Pareto optimum 
653 |a Optimization algorithms 
700 1 |a Li Zihan  |u School of Aeronautical Manufacturing and Mechanical Engineering, Nanchang Hangkong University, Nanchang 330063, China 
700 1 |a Li, Ji  |u School of Aeronautical Manufacturing and Mechanical Engineering, Nanchang Hangkong University, Nanchang 330063, China 
700 1 |a Hu, Guoqing  |u School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China 
773 0 |t Mathematics  |g vol. 13, no. 22 (2025), p. 3613-3641 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275541980/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275541980/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275541980/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch