Mineralogy and Geochemistry Characteristics of Nephrite from Jingbaoer Grassland Jade Mine Site in Mazongshan Town, Gansu Province, China: Implications for the Provenance of Excavated Jade Artifacts

Guardado en:
Bibliografiske detaljer
Udgivet i:Minerals vol. 15, no. 11 (2025), p. 1186-1210
Hovedforfatter: Liu Jifu
Andre forfattere: Cao, Yi, Chang, Yuan, Su, Yue, Yu, Xuan, Yang, Mingxing
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3275544246
003 UK-CbPIL
022 |a 2075-163X 
024 7 |a 10.3390/min15111186  |2 doi 
035 |a 3275544246 
045 2 |b d20250101  |b d20251231 
084 |a 231539  |2 nlm 
100 1 |a Liu Jifu  |u Gemological Institute, China University of Geosciences, Wuhan 430074, China; liujf@cug.edu.cn (J.L.); 
245 1 |a Mineralogy and Geochemistry Characteristics of Nephrite from Jingbaoer Grassland Jade Mine Site in Mazongshan Town, Gansu Province, China: Implications for the Provenance of Excavated Jade Artifacts 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The Jingbaoer Grassland Jade Mine situated approximately 20 km northwest of Mazongshan Town in Gansu Province, China, represents an important source of nephrite dating back to the pre-Qin period. In this study, 58 representative nephrite samples were analyzed to investigate their mineralogical and geochemical characteristics using polarized light microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The mine is situated near the contact zone between the Silurian Gongpoquan Group and Devonian granite, with surrounding rocks primarily consisting of Precambrian dolomitic marble. The nephrite displays diverse colors—white, bluish-white, sugar-white, and cyan—with darker tones and abundant manganese-stained dendritic and flocculent inclusions. It shows a relative density of 2.82–2.99, a refractive index of 1.60–1.62, and a vitreous to greasy luster. Texturally, the jade is predominantly composed of micro-fibrous interwoven tremolite, occasionally exhibiting oriented recrystallization textures. Minor minerals include diopside, apatite, titanite, chlorite, epidote, allanite, rutile, and graphite. Chemically, the samples are rich in SiO2, MgO, and CaO, with trace amounts of FeO, MnO, Al2O3, and Na2O. Notably, Sr and Sm are enriched, Nb is slightly depleted, and Eu shows a distinct negative anomaly. The average total rare earth content is 4.25 µg/g. The study suggests that the deposits in the research area are typical of the contact-metasomatic type, formed through multi-stage hydrothermal metasomatism between acidic granitic intrusions and dolomitic marble, creating favorable conditions for the formation of high-quality tremolite jade. Comparative analysis with jade artifacts excavated from the Tomb of Marquis Yi of Zeng suggests a possible provenance link to the Jingbaoer deposit, providing valuable evidence for the historical mining and distribution of nephrite during the Warring States period. 
651 4 |a Gansu China 
651 4 |a South Korea 
651 4 |a United States--US 
651 4 |a China 
653 |a Mass spectrometry 
653 |a Aluminum oxide 
653 |a Silurian 
653 |a Scanning electron microscopy 
653 |a Manganese 
653 |a Grasslands 
653 |a Apatite 
653 |a Devonian 
653 |a Polarized light 
653 |a Scientific imaging 
653 |a Refractivity 
653 |a Mining 
653 |a Diopside 
653 |a Optical microscopy 
653 |a Ancient civilizations 
653 |a Electron microscopy 
653 |a Comparative analysis 
653 |a Rutile 
653 |a Silica 
653 |a Lasers 
653 |a Mineralogy 
653 |a Geochemistry 
653 |a Precambrian 
653 |a Relative density 
653 |a Mass spectroscopy 
653 |a Light microscopy 
653 |a Chlorite 
653 |a Marble 
653 |a Tremolite 
653 |a Cultural heritage 
653 |a Provenance 
653 |a Silicon dioxide 
653 |a Inclusions 
653 |a Inductively coupled plasma mass spectrometry 
653 |a Artifacts 
653 |a Chemical elements 
653 |a Specific gravity 
653 |a Electron probe microanalysis 
653 |a Laser ablation 
653 |a Recrystallization 
653 |a Chinese history 
653 |a Geology 
653 |a Electron probe 
653 |a Refractive index 
653 |a Titanite 
653 |a Saccharides 
653 |a Archaeology 
653 |a Ablation 
653 |a Calcium magnesium silicates 
700 1 |a Cao, Yi  |u Gemological Institute, China University of Geosciences, Wuhan 430074, China; liujf@cug.edu.cn (J.L.); 
700 1 |a Chang, Yuan  |u Gemological Institute, China University of Geosciences, Wuhan 430074, China; liujf@cug.edu.cn (J.L.); 
700 1 |a Su, Yue  |u College of Humanity, Henan University of Science and Technology, Luoyang 471023, China; gemlabmem@163.com 
700 1 |a Yu, Xuan  |u Gemological Institute, China University of Geosciences, Wuhan 430074, China; liujf@cug.edu.cn (J.L.); 
700 1 |a Yang, Mingxing  |u Gemological Institute, China University of Geosciences, Wuhan 430074, China; liujf@cug.edu.cn (J.L.); 
773 0 |t Minerals  |g vol. 15, no. 11 (2025), p. 1186-1210 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275544246/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275544246/fulltextwithgraphics/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275544246/fulltextPDF/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch