Comparative Study of Application of Production Sequencing and Scheduling Problems in Tire Mixing Operations with ADAM, Grey Wolf Optimizer, and Genetic Algorithm

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:Systems vol. 13, no. 11 (2025), p. 998-1024
প্রধান লেখক: Yıldırım Elif
অন্যান্য লেখক: Denizhan Berrin
প্রকাশিত:
MDPI AG
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text + Graphics
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 3275563915
003 UK-CbPIL
022 |a 2079-8954 
024 7 |a 10.3390/systems13110998  |2 doi 
035 |a 3275563915 
045 2 |b d20250101  |b d20251231 
084 |a 231636  |2 nlm 
100 1 |a Yıldırım Elif 
245 1 |a Comparative Study of Application of Production Sequencing and Scheduling Problems in Tire Mixing Operations with ADAM, Grey Wolf Optimizer, and Genetic Algorithm 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Scheduling and sequencing problems in manufacturing are complex and challenging to solve. Effective process planning is fundamental to optimizing production time and resource utilization in process-type manufacturing environments such as tire manufacturing. This research focuses on an existing tire manufacturing process. The scheduling problem in the compound mixing stage, which is considered the most challenging and vital stage of tire manufacturing, has been solved in this study. Adaptive Moment Estimation Optimizer (ADAM Optimizer), Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA) are selected as solution methodologies. A comparative analysis is performed to evaluate the effectiveness of these algorithms based on critical performance metrics, including completion times, machine utilization, and setup numbers. The results of this study show that ADAM and algorithmic methods optimize machine utilization by 1.28% and save 32.6% production time, outperforming the traditional manual allocation strategies mainly used by industrial companies, as well as GWO and GA. 
653 |a Scheduling 
653 |a Process planning 
653 |a Comparative studies 
653 |a Machine learning 
653 |a Performance measurement 
653 |a Deep learning 
653 |a Genetic algorithms 
653 |a Assignment problem 
653 |a Optimization techniques 
653 |a Production scheduling 
653 |a Optimization 
653 |a Flexibility 
653 |a Effectiveness 
653 |a Approximation 
653 |a Flexible manufacturing systems 
653 |a Resource utilization 
653 |a Manufacturing 
653 |a Efficiency 
700 1 |a Denizhan Berrin 
773 0 |t Systems  |g vol. 13, no. 11 (2025), p. 998-1024 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275563915/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275563915/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275563915/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch