Dynamic Error Correction for Fine-Wire Thermocouples Based on CRBM-DBN with PINN Constraint

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 11 (2025), p. 1831-1858
Autor principal: Zhao, Chenyang
Otros Autores: Zhou, Guangyu, Zhang, Junsheng, Zhang, Zhijie, Huang, Gang, Xie Qianfang
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275564605
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17111831  |2 doi 
035 |a 3275564605 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Zhao, Chenyang  |u Department of Electronic Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China; zhangjs@tit.edu.cn (J.Z.); huangdong0122@163.com (G.H.) 
245 1 |a Dynamic Error Correction for Fine-Wire Thermocouples Based on CRBM-DBN with PINN Constraint 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In high-temperature testing scenarios that rely on contact, fine-wire thermocouples demonstrate commendable dynamic performance. Nonetheless, their thermal inertia leads to notable dynamic nonlinear inaccuracies, including response delays and amplitude reduction. To mitigate these challenges, a novel dynamic error correction approach is introduced, which combines a Continuous Restricted Boltzmann Machine, Deep Belief Network, and Physics-Informed Neural Network (CDBN-PINN). The unique heat transfer properties of the thermocouple’s bimetallic structure are represented through an Inverse Heat Conduction Equation (IHCP). An analysis is conducted to explore the connection between the analytical solution’s ill-posed nature and the thermocouple’s dynamic errors. The transient temperature response’s nonlinear characteristics are captured using CRBM-DBN. To maintain physical validity and minimize noise amplification, filtered kernel regularization is applied as a constraint within the PINN framework. This approach was tested and confirmed through laser pulse calibration on thermocouples with butt-welded and ball-welded configurations of 0.25 mm and 0.38 mm. Findings reveal that the proposed method achieved a peak relative error of merely 0.83%, superior to Tikhonov regularization by −2.2%, Wiener deconvolution by 20.40%, FBPINNs by 1.40%, and the ablation technique by 2.05%. In detonation tests, the corrected temperature peak reached 1045.7 °C, with the relative error decreasing from 77.7% to 5.1%. Additionally, this method improves response times, with the rise time in laser calibration enhanced by up to 31 ms and in explosion testing by 26 ms. By merging physical constraints with data-driven methodologies, this technique successfully corrected dynamic errors even with limited sample sizes. 
653 |a Wire 
653 |a Principles 
653 |a Accuracy 
653 |a Investigations 
653 |a Trends 
653 |a Error correction 
653 |a Detonation 
653 |a Calibration 
653 |a Bimetals 
653 |a Belief networks 
653 |a Ablation 
653 |a Butt welding 
653 |a Nonlinear response 
653 |a Thermocouples 
653 |a Heat conductivity 
653 |a Boundary conditions 
653 |a High temperature 
653 |a Heat transfer 
653 |a Regularization 
653 |a Physics 
653 |a Partial differential equations 
653 |a Conductive heat transfer 
653 |a Neural networks 
653 |a Error correction & detection 
653 |a Inverse problems 
653 |a Temperature 
653 |a Conduction heating 
653 |a Sensors 
653 |a Exact solutions 
653 |a Regularization methods 
653 |a Algorithms 
653 |a Laser beam welding 
653 |a Constraints 
700 1 |a Zhou, Guangyu  |u School of Instrument and Electronics, North University of China, Taiyuan 030051, China; zgy4083273@163.com (G.Z.); zhangzhijie@nuc.edu.cn (Z.Z.); xqf15735882558@163.com (Q.X.) 
700 1 |a Zhang, Junsheng  |u Department of Electronic Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China; zhangjs@tit.edu.cn (J.Z.); huangdong0122@163.com (G.H.) 
700 1 |a Zhang, Zhijie  |u School of Instrument and Electronics, North University of China, Taiyuan 030051, China; zgy4083273@163.com (G.Z.); zhangzhijie@nuc.edu.cn (Z.Z.); xqf15735882558@163.com (Q.X.) 
700 1 |a Huang, Gang  |u Department of Electronic Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China; zhangjs@tit.edu.cn (J.Z.); huangdong0122@163.com (G.H.) 
700 1 |a Xie Qianfang  |u School of Instrument and Electronics, North University of China, Taiyuan 030051, China; zgy4083273@163.com (G.Z.); zhangzhijie@nuc.edu.cn (Z.Z.); xqf15735882558@163.com (Q.X.) 
773 0 |t Symmetry  |g vol. 17, no. 11 (2025), p. 1831-1858 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275564605/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275564605/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275564605/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch