System-Level Evaluation of Autonomous Vehicle Lane Deployment Strategies Under Mixed Traffic Flow

Uloženo v:
Podrobná bibliografie
Vydáno v:Systems vol. 13, no. 11 (2025), p. 958-979
Hlavní autor: Long, Weiyi
Další autoři: Wang, Wei, Jin, Kun
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3275564726
003 UK-CbPIL
022 |a 2079-8954 
024 7 |a 10.3390/systems13110958  |2 doi 
035 |a 3275564726 
045 2 |b d20250101  |b d20251231 
084 |a 231636  |2 nlm 
100 1 |a Long, Weiyi 
245 1 |a System-Level Evaluation of Autonomous Vehicle Lane Deployment Strategies Under Mixed Traffic Flow 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Connected and Autonomous Vehicles (CAVs) are expected to reshape future transportation systems. During the long transition period, in which CAVs and human-driven vehicles (HVs) coexist, deploying CAV-dedicated lanes offers a promising approach to enhancing overall efficiency, but raises concerns about distributional fairness. This study develops a system-level evaluation framework that integrates bi-level network capacity optimization with practical planning constraints to determine optimal lane-deployment strategies. The bi-level model aims to maximize network reserve capacity at the upper level, while it captures mixed-traffic flow distribution under the lower-level user equilibrium (UE) principle. Both levels are constrained by CAV market penetration (MPR), social equity, and budget bound considerations. To ensure computational tractability, nonlinear relationships are linearized through Piecewise Linear Approximation (PLA), converting the original Mixed-Integer Nonlinear Programming (MINLP) model into a Mixed-Integer Linear Programming (MILP) formulation solvable by standard optimization solvers. Numerical experiments on the Sioux Falls network demonstrate that increasing MPR and dedicated lane deployment can substantially improve network capacity by up to 36% compared with the baseline, with diminishing marginal benefits as deployment scale excesses. Incorporating equity constraints further reduce the HV–CAV cost gap, promoting fairer outcomes without significant efficiency loss. These findings offer quantitative evidence on the efficiency–equity trade-offs in CAV-dedicated lanes planning and provide practical implications for policymakers in developing sustainable strategies. 
653 |a Flow distribution 
653 |a Traffic flow 
653 |a Simulation 
653 |a Linear programming 
653 |a Integer programming 
653 |a Traffic 
653 |a Planning 
653 |a Reserve capacity 
653 |a Optimization 
653 |a Autonomous vehicles 
653 |a Roads & highways 
653 |a Efficiency 
653 |a Transportation networks 
653 |a Transportation systems 
653 |a Feasibility 
653 |a Travel 
653 |a Mixed integer 
653 |a Automation 
653 |a Constraints 
653 |a Energy consumption 
653 |a Nonlinear programming 
700 1 |a Wang, Wei 
700 1 |a Jin, Kun 
773 0 |t Systems  |g vol. 13, no. 11 (2025), p. 958-979 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275564726/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275564726/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275564726/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch