Reliability Assessment for Multivariate Degradation System Based on Uncertainty and Chatterjee Correlation Coefficient

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems vol. 13, no. 11 (2025), p. 953-977
1. Verfasser: Tang Jiayin
Weitere Verfasser: Jiang Mengjia, Mao Yamin
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3275564766
003 UK-CbPIL
022 |a 2079-8954 
024 7 |a 10.3390/systems13110953  |2 doi 
035 |a 3275564766 
045 2 |b d20250101  |b d20251231 
084 |a 231636  |2 nlm 
100 1 |a Tang Jiayin  |u Department of Statistics, School of Mathematics, Southwest Jiaotong University, Chengdu 611756, China; shi_jiajiaya@126.com 
245 1 |a Reliability Assessment for Multivariate Degradation System Based on Uncertainty and Chatterjee Correlation Coefficient 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Considering the effects of complex correlations between variables and uncertainty of degradation processes in multivariate degradation systems, a system reliability assessment method that integrated Chatterjee correlation coefficient and stochastic process theory is proposed. First, due to temporal uncertainty and measurement error in the univariate degradation process, a general Wiener-process-based state space model is constructed to determine the marginal distributions. Secondly, the nonlinear and asymmetric correlation between variables is analyzed by the nonparametric Chatterjee correlation coefficient. The multivariate joint degradation model is constructed by combining the Vine copula technique. The copula structure selection is optimized based on the goodness-of-fit criterion for modeling the degradation dependency network. In order to verify the validity of the method, comparative experiments based on the C-MAPSS aero-engine degradation dataset are conducted. Compared with the independent model ignoring the correlation of the variables, Vine copula with Chatterjee coefficient shows the rationality of the system reliability assessment. The system reliability curve lies between the cases of complete independence and complete dependence of variables. Compared to the traditional Vine copula model with Kendall coefficient, the method in this paper shows a significant improvement in asymmetric correlation characterization, with a Vuong test value of 6.37. The assessment method given in this paper provided an improved paradigm for reliability assessments of complex systems. 
653 |a Reliability analysis 
653 |a Machine learning 
653 |a Stochastic processes 
653 |a Physics 
653 |a Datasets 
653 |a System reliability 
653 |a Random variables 
653 |a Artificial intelligence 
653 |a Brownian motion 
653 |a Complex variables 
653 |a Goodness of fit 
653 |a Sensors 
653 |a State space models 
653 |a Multivariate analysis 
653 |a Complex systems 
653 |a Methods 
653 |a Degradation 
653 |a Uncertainty 
653 |a Correlation coefficients 
700 1 |a Jiang Mengjia  |u Department of Statistics, School of Mathematics, Southwest Jiaotong University, Chengdu 611756, China; shi_jiajiaya@126.com 
700 1 |a Mao Yamin  |u CETC Rong Wei Electronic Technology Co., Ltd., Chengdu 610036, China; snwiapple@163.com 
773 0 |t Systems  |g vol. 13, no. 11 (2025), p. 953-977 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275564766/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275564766/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275564766/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch