Gravity MHV amplitudes via Berends-Giele currents

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of High Energy Physics vol. 2025, no. 11 (Nov 2025), p. 156
Autor principal: Hasuwannakit, Chanon
Otros Autores: Krasnov, Kirill
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275590428
003 UK-CbPIL
022 |a 1029-8479 
024 7 |a 10.1007/JHEP11(2025)156  |2 doi 
035 |a 3275590428 
045 2 |b d20251101  |b d20251130 
084 |a 243435  |2 nlm 
100 1 |a Hasuwannakit, Chanon  |u University of Nottingham, School of Mathematical Sciences, Nottingham, U.K. (GRID:grid.4563.4) (ISNI:0000 0004 1936 8868) 
245 1 |a Gravity MHV amplitudes via Berends-Giele currents 
260 |b Springer Nature B.V.  |c Nov 2025 
513 |a Journal Article 
520 3 |a Berends and Giele derived the Parke-Taylor formula for Yang-Mills MHV amplitudes by computing Berends-Giele currents involving gluons of all-plus and all-but-one-plus helicities. Remarkably, the all-plus current already encodes much of the Parke-Taylor formula structure. The all-but-one-plus current satisfies a more intricate recursion relation than the all-plus case, but one that can still be solved explicitly. This current turns out to be proportional to the all-plus current, which explains why the essential features of the MHV formula are already present at the all-plus level.In this paper, we carry out an analogous program for gravity. The all-plus graviton Berends-Giele current satisfies a recursion relation that is more involved than in the Yang-Mills case, but whose explicit solution is known: a sum over spanning trees of the complete graph on n vertices. We derive and solve the recursion relation for the all-but-one-plus graviton current. The solution is again given by a sum over spanning trees, where each tree contributes a term proportional to the corresponding all-plus current, multiplied by a factor given by a sum over subtrees. Only a small subset of these terms contributes to the MHV amplitude, which we recover explicitly. This provides a direct derivation of the gravity MHV formula from the gravitational Feynman rules — achieving what Berends, Giele, and Kuijf in their 1987 paper regarded as “hard to obtain directly from quantum gravity”. 
653 |a Amplitudes 
653 |a Apexes 
653 |a Gravitons 
653 |a Graph theory 
653 |a Quantum gravity 
700 1 |a Krasnov, Kirill  |u University of Nottingham, School of Mathematical Sciences, Nottingham, U.K. (GRID:grid.4563.4) (ISNI:0000 0004 1936 8868) 
773 0 |t Journal of High Energy Physics  |g vol. 2025, no. 11 (Nov 2025), p. 156 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275590428/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275590428/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch