Gravity MHV amplitudes via Berends-Giele currents
Guardado en:
| Publicado en: | Journal of High Energy Physics vol. 2025, no. 11 (Nov 2025), p. 156 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
Springer Nature B.V.
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3275590428 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 1029-8479 | ||
| 024 | 7 | |a 10.1007/JHEP11(2025)156 |2 doi | |
| 035 | |a 3275590428 | ||
| 045 | 2 | |b d20251101 |b d20251130 | |
| 084 | |a 243435 |2 nlm | ||
| 100 | 1 | |a Hasuwannakit, Chanon |u University of Nottingham, School of Mathematical Sciences, Nottingham, U.K. (GRID:grid.4563.4) (ISNI:0000 0004 1936 8868) | |
| 245 | 1 | |a Gravity MHV amplitudes via Berends-Giele currents | |
| 260 | |b Springer Nature B.V. |c Nov 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Berends and Giele derived the Parke-Taylor formula for Yang-Mills MHV amplitudes by computing Berends-Giele currents involving gluons of all-plus and all-but-one-plus helicities. Remarkably, the all-plus current already encodes much of the Parke-Taylor formula structure. The all-but-one-plus current satisfies a more intricate recursion relation than the all-plus case, but one that can still be solved explicitly. This current turns out to be proportional to the all-plus current, which explains why the essential features of the MHV formula are already present at the all-plus level.In this paper, we carry out an analogous program for gravity. The all-plus graviton Berends-Giele current satisfies a recursion relation that is more involved than in the Yang-Mills case, but whose explicit solution is known: a sum over spanning trees of the complete graph on n vertices. We derive and solve the recursion relation for the all-but-one-plus graviton current. The solution is again given by a sum over spanning trees, where each tree contributes a term proportional to the corresponding all-plus current, multiplied by a factor given by a sum over subtrees. Only a small subset of these terms contributes to the MHV amplitude, which we recover explicitly. This provides a direct derivation of the gravity MHV formula from the gravitational Feynman rules — achieving what Berends, Giele, and Kuijf in their 1987 paper regarded as “hard to obtain directly from quantum gravity”. | |
| 653 | |a Amplitudes | ||
| 653 | |a Apexes | ||
| 653 | |a Gravitons | ||
| 653 | |a Graph theory | ||
| 653 | |a Quantum gravity | ||
| 700 | 1 | |a Krasnov, Kirill |u University of Nottingham, School of Mathematical Sciences, Nottingham, U.K. (GRID:grid.4563.4) (ISNI:0000 0004 1936 8868) | |
| 773 | 0 | |t Journal of High Energy Physics |g vol. 2025, no. 11 (Nov 2025), p. 156 | |
| 786 | 0 | |d ProQuest |t Advanced Technologies & Aerospace Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3275590428/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3275590428/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |